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 2

Summary 22 

Despite the promising outcomes of immune checkpoint blockade (ICB), resistance to 23 

ICB presents a new challenge. Therefore, selecting patients for specific ICB 24 

applications is crucial for maximizing therapeutic efficacy. Herein we curated 69 human 25 

esophageal squamous cell cancer (ESCC) patients' tumor microenvironment (TME) 26 

single-cell transcriptomic datasets to subtype ESCC. Integrative analyses of the cellular 27 

network transcriptional signatures of T cells, myeloid cells, and fibroblasts define distinct 28 

ESCC subtypes characterized by T cell exhaustion, Interferon (IFN) a/b signaling, TIGIT 29 

enrichment, and specific marker genes. Furthermore, this approach classifies ESCC 30 

patients into ICB responders and non-responders, as validated by liquid biopsy single-31 

cell transcriptomics. Our study stratifies ESCC patients based on TME transcriptional 32 

network, providing novel insights into tumor niche remodeling and predicting ICB 33 

responses in ESCC patients. 34 

 35 

Keywords: Esophageal squamous cell cancer, tumor microenvironment (TME), single-36 

cell transcriptomics, immune checkpoint inhibitors, cancer immunotherapy, 37 

immunotherapy resistance.  38 
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Introduction 41 

Esophageal cancer is the seventh most prevalent cancer, and ESCC accounts for more 42 

than 80% of esophageal cancer cases worldwide.1, 2  The leading cause of cancer death 43 

of ESCC is the sixth high of all types of cancer as the 5-year survival rate is as low as 44 

10-25 %.3  Despite its high incidence, the treatment option for ESCC is limited 45 

compared to the other major types of cancer. Among the multidisciplinary treatment, 46 

including surgery, neoadjuvant therapy, and chemoradiotherapy, therapeutic option for 47 

ESCC largely relies on cytotoxic reagent-based chemotherapy. However, the outcome 48 

is unfavorable.4, 5   49 

To overcome the limited efficacy of ESCC treatment, immunotherapy using 50 

immune checkpoint inhibitors (ICI) 6  has recently been tested in clinical trials, which 51 

resulted in survival benefits for advanced or metastatic ESCC patients.7-9  However, 52 

approximately 34% and 25% of ESCC patients discontinued ICI treatment because of 53 

disease progression9  and severe adverse effects,10, 11  respectively. In recent clinical 54 

trials, the ICI response rate of ESCC patients was only 17% to 28%.10-12 . Although the 55 

clinical trials using ICIs are mainly applied to patients diagnosed with advanced or 56 

metastatic ESCC, pathologic criteria used for selecting patients for ICIs remain to be 57 

clarified.5  Despite the modern pathological criteria, such as PD-L1 expression in tumor 58 

cells, stratifying ESCC patients for specific ICIs becomes crucial in improving the 59 

effectiveness of immunotherapy. 60 
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Tumor microenvironment (TME), a cellular niche surrounding tumor cells, 61 

includes immune cells, fibroblasts, and endothelial cells. 13  Accumulating evidence 62 

suggests that TME plays a crucial role in tumor progression, metastasis, therapy 63 

resistance, and immune evasion.14  Along with the advent of single-cell transcriptomics, 64 

the oncogenic functions of TME in ESCC tumorigenesis have been recently unraveled. 65 

Several studies characterized ESCC TME as creating an immunosuppressive 66 

environment.15-18  In addition to the conventional cancer classification, which mainly 67 

relies on the pathologic stages,19  transcriptome-based cancer classification has 68 

recently been introduced in several cancer types.20, 21  Simultaneously, profiling cancer 69 

immune systems or cancer-associated fibroblasts (CAFs) identified tumorigenic roles of 70 

tumor-infiltrated_ immunocytes and CAFs, which also gained attention.22, 23  71 

Nonetheless, comprehensive dissection and characterization of  ESCC TME still 72 

needed to be achieved. Moreover, how distinct TMEs define immune evasion and ICB 73 

response of ESCC remains to be determined. 74 

Herein we analyzed 69 single-cell transcriptomic datasets of ESCC patients’ 75 

primary tumor samples and characterized whole TME. Intriguingly, comprehensive 76 

analyses of TME identified the distinct networks among T cells, myeloid cells, and 77 

fibroblasts, which define specific subtypes and immunosuppression of ESCC.  78 

 79 

80 
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Results 81 

Tumor immune environment transcriptome-based classification of ESCC patients 82 

To elucidate the tumor microenvironment (TME)-based patient characterization, we 83 

analyzed single-cell RNA-sequencing (scRNA-seq) datasets of ESCC primary tumors 84 

from 69 patients (Fig. 1). All datasets were integrated using the Harmony algorithm24   85 

and processed to analyze only non-epithelial cells (EPCAM negative) comprising ESCC 86 

TME (Fig. 2A and 2B). Unsupervised transcriptomic clustering revealed several immune 87 

cell types, fibroblasts, and mast cells (Fig. 2C and Supplementary Fig. S1A). Since T 88 

cells play a pivotal role in eliciting an immunogenic response to tumor cells, we first 89 

analyzed T cell clusters.25, 26  T cell clusters were isolated and processed into the 90 

subgroups (Fig. 2D). The unsupervised clustering using principal component analysis 91 

(PCA) and Pearson’s correlation categorized T cells of 69 datasets into four groups (T1, 92 

T2, T3, and T4) (Fig. 2E). On the Uniform Manifold Approximation and Projection 93 

(UMAP), T cells of T1 and T3 groups were closely located together. In contrast, the T4 94 

group was slightly distinct from the T1 and T3 groups (Fig. 2F). Notably, the T2 group 95 

was the most distantly located on the UMAP, indicating the minor similarity of T2 96 

transcriptome compared to that of T1, T3, and T4 groups (Fig. 2F). To define subsets of 97 

T cells, we annotated T cells based on the marker genes expression (Fig. 2G and 98 

Supplementary Fig. S1B and S1C). In a detailed cell subset analysis, T cells of the T2 99 

group showed the most abundance in CD8 T cells, while the other subsets (T1, T3, and 100 

T4) rarely exhibited CD8 T cells (Fig. 2G). Besides, T cells of the T4 group showed the 101 

highest proportion of exhausted T cells (Tex) compared to the other three groups (Fig. 102 
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2G). Since T2 is the distinct subgroup, we further analyzed the T cells of the T2 group. 103 

After excluding the CD4 T cell cluster, we found that T2 group T cells can be classified 104 

into several memory T cells based on the marker genes of subsets (Supplementary Fig. 105 

S1D and S1E).27, 28  Interestingly, late memory T cells and effector T cells were 106 

observed to be the most frequent cells in the T2 group compared to the other subsets 107 

(Supplementary Fig. S1F). These results indicate that the T4 group of patients is mainly 108 

characterized by T cell exhaustion, whereas the T2 group is enriched with active CD8 T 109 

cells.  110 

In addition, we comparatively analyzed myeloid cell clusters of 69 datasets (Fig. 111 

2H). Similar to T cell analysis, Myeloid cells transcriptomes were classified into four 112 

groups (Ma, Mb, Mc, and Md) based on the principal component analysis and Pearson’s 113 

correlation (Fig. 2I). Myeloid cells of Ma and Mc showed close location on the UMAP. In 114 

contrast, some Md cells were distinguishable from Ma and Mc. The most distinct 115 

myeloid sub-group was Mb on the UMAP (Fig. 2J). Interestingly, based on the clustering 116 

with marker genes, Mb-grouped myeloid cells were enriched with M1 macrophages, 117 

whereas possessing the least proportion of M2 macrophages compared to the other 118 

three groups (Ma, Mc, and Md) (Fig. 2K and Supplementary Fig. S1G). The Ma and Mc 119 

groups of myeloid cells were enriched with macrophages. Md groups showed the 120 

highest proportion of M2 macrophages among the four groups (Fig. 2K). These results 121 

imply that the ESCC patients in the Mb group might have tumor-unfavorable myeloid 122 

cells compared to the other groups.  123 

 124 
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Single-cell transcriptomes of myeloid and T cells define immunosuppressive 125 

ESCC subtypes 126 

We next evaluated which group of T cells exhibits the most immunosuppressive 127 

characteristics by the expression of Tex markers. The T4 group expressed the highest 128 

level of LAG3, PDCD1, and HAVCR2, whereas the T2 group barely expressed the Tex 129 

cell markers (Fig. 3A and Supplementary S2A). To test if the T cell category correlates 130 

with myeloid cell classification, we compared the frequency of each patient of the T cell 131 

group in the myeloid cell group. Interestingly, patients of T2, the least Tex-characterized 132 

group, solely belonged to the Mb categories. T4-grouped patients, the enriched Tex-133 

characterized group, were mainly distributed to Ma- or Mc-grouped patients (Fig. 3B 134 

and 3C). The most frequent patients of T4 were identified as Ma- and Mc-grouped 135 

patients. Besides, T1- and T3-grouped patients were primarily directed from Ma- or Mc-136 

grouped patients and Mc- or Md-grouped patients, respectively (Fig. 3B and 3C). 137 

Accordingly, we combined the categories of T cells and myeloid cells to make 13 sub-138 

groups (M-T groups) of patients (Fig. 3D). We observed that the Mb-T2 group was 139 

separated from other cell clusters in the T cell UMAP. The Ma-T4 or Mc-T4 groups were 140 

slightly distinct from the significant population of T cells in the UMAP (Fig. 3E). We also 141 

identified that Ma-T4 and Mc-T4 groups exhibited the highest expression of Tex cell 142 

markers. Conversely, the Mb-T2 group showed the lowest expression of those markers 143 

(Fig. 3F and Supplementary Fig. S2B and S2C). Based on these findings, we analyzed 144 

Ma-T4 and Mc-T4 groups of patients with T cells, epithelial cells, and myeloid cells 145 

since these groups showed the highest expression of Tex markers in T cells. In the 146 

GSEA comparing Ma-T4 or Mc-T4 with the Mb-T2 group of T cells, both Ma-T4 and Mc-147 
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T4 groups displayed enrichment of ‘Negative regulation of lymphocyte activation’ and 148 

‘IFN α/β signaling’ (Fig. 3G and 3H and Supplementary Fig. S2D), implying that T cells 149 

are enriched with type I IFN signaling in the Ma-T4 and Mc-T4 groups. Since Ma-T4- 150 

and Mb-T2-grouped T cells have the most and least Tex features, respectively, we 151 

compared these two groups in T cells to identify specific signaling pathways for each 152 

group. From the positive signaling in Ma-T4 and negative signaling in Mb-T2 groups, we 153 

found that ‘PD-1 signaling’ and ‘IFN α/β signaling’ were shared in T cells of both groups 154 

by GSEA analysis (Fig. 3I and 3J). These results suggested that Ma-T4-grouped T cells 155 

were relatively enriched with immunosuppressive signaling compared to the Mb-T2-156 

grouped T cells. Additionally, from the GSEA of epithelial and myeloid cells, epithelial 157 

cells of Ma-T4 and Mc-T4 groups were observed to show enriched ‘IFN α/β signaling’, 158 

consistent with the result from T cell (Supplementary Fig. S2E and S2F). These results 159 

suggest that Ma-T4 and Mc-T4 groups are characterized by T cell exhaustion and IFN 160 

signaling activation compared to the Mb-T2 group. 161 

 162 

Cellular interactome identifies the TIGIT-NECTINE2 pathway as a co-suppressor 163 

for immunosuppressive TME 164 

We next performed cell-to-cell interaction analysis using the ‘CellChat’ package that 165 

infers cellular interactome based on ligand-receptor expressions.29  Comparative 166 

analysis of cell-to-cell interactions in Ma-T4 and Mb-T2 identified that TIGIT, NECTIN, 167 

and PD-L1 signaling were significantly enriched in the Ma-T4 patient group (Fig. 4A). 168 
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The same results were also observed in the comparison between Mc-T4 and Mb-T2 169 

groups of patients (Fig. 4B). Consistently, TIGIT expression was higher in Ma-T4 and 170 

Mc-T4 groups while lower in Mb-T2 group, especially in T cells (Fig. 4C and 4D and 171 

Supplementary Fig. S3A). TIGIT was primarily expressed in Tex and CD4 T cells as 172 

previously reported (Fig. 4E).30, 31  The expression of TIGIT in Tex was markedly higher 173 

in Ma-T4 and Mc-T4 groups compared to the Mb-T2 group (Fig. 4F). As NECTIN2 is 174 

known to be a ligand for TIGIT and CD226,32  TIGIT and NECTIN2 signaling-mediated 175 

interactions were significant and abundant in Ma-T4- and Mc-T4-grouped patients 176 

compared to Mb-T2 patients with similar interacting patterns (Fig. 4G). Moreover, 177 

NECTIN2 was expressed mainly in epithelial cells, which implies possible interaction 178 

between epithelial cells and T cells through NECTIN2 and TIGIT (Supplementary Fig. 179 

S3C and S3D). However, the expression of NECTIN2, a competitive ligand of TIGIT and 180 

CD226, was not significantly higher in Ma-T4 or Mc-T4 group compared to the other 181 

groups (Supplementary Fig. S3E). We analyzed the specific genes in cell-to-cell 182 

interactions and found that various types of cells, including epithelial and myeloid cells, 183 

were predicted to interact with T cells and myeloid cells via NECTIN2 and TIGIT. The 184 

interactions between NECTIN2 and TIGIT or CD226 were more abundant in Ma-T4 and 185 

Mc-T4 groups compared to Mb-T2 (Fig. 4H). These results suggest that T cell activation 186 

inhibitory signaling, i.e., NECTIC and TIGIT, could be therapeutic targets for Ma-T4 and 187 

Mc-T4 patients. 188 

 189 
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Subgroups defined by fibroblast transcriptomes direct immunosuppressive 190 

phenotypes 191 

We next analyzed fibroblast clusters of 69 ESCC datasets based on their transcriptomic 192 

similarity. The fibroblast clusters showed highly heterogenic features by individuals, 193 

which was not evident in T cells and myeloid cells (Fig. 5A). The correlation matrix of 194 

fibroblast identified five subgroups (F1, F2, F3, F4, and F5) of patients (Fig. 5B and 5C). 195 

Interestingly, most patients of the F4 subgroup overlapped with those of the T2 196 

subgroup (Fig. 5D-5F). Meanwhile, the T4 subgroup characterized by abundant Tex cells 197 

was mainly distributed to F1, F2, and F5 subgroups (Fig. 5D-5F). Therefore, we 198 

constructed combined F-T groups connecting fibroblast groups and T cell groups and 199 

compared them on UMAP, which showed that the F4-T2 was the most distinct subgroup 200 

on the UMAP of T cell (Fig. 5G). Furthermore, the F1-T4 subgroup expressed the 201 

highest level of Tex cell markers compared to the others (Fig. 5H and Supplementary Fig. 202 

S4A). On the other hand, the F4-T2 group showed the most negligible expression of Tex 203 

cell markers (Fig. 5H and Supplementary Fig. S4A). Based on these findings, we 204 

comparatively analyzed F1-T4 and F4-T2 sub-categorized fibroblasts using GSEA. Two 205 

hundred eleven signaling pathways overlapped in the F1-T4-positively significant 206 

dataset and the F4-T2-negatively significant dataset. Three signaling pathways 207 

coincided in the F1-T4-negatively significant dataset and F4-T2-positively significant 208 

dataset (Fig. 5I). Interestingly, among those overlapped signaling, we found interleukins 209 

and TGF-β signaling pathways were enriched in F1-T4 fibroblasts (Fig. 5I-5K). In 210 

contrast, complement process triggering signaling and FCGR (Fc-gamma receptor) 211 

activation signaling were enriched in F4-T2 fibroblasts. Additionally, F1-T4 and F4-T2 212 
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grouped T cells were analyzed by GSEA. Consistent with M-T classification, the F1-T4 213 

group showed ‘PD-1 signaling’ and ‘IFN α/β signaling’ with positive NES while negative 214 

NES for F4-T2 T cells (Supplementary Fig. S4B). In epithelial cell analysis, 215 

‘Mitochondrial electron transport NADH to Ubiquinone’ signaling was identified as 216 

specific to F1-T4 and F4-T2 with positive NES and negative NES, respectively, 217 

consistent with the results from M-T class analysis (Supplementary Fig. S4C). Notably, 218 

in comparison of M-T and F-T classification, we found all patients classified into Mb-T2 219 

were also included in the F4-T2 group (Supplementary Fig. S4D). Although Ma-T4 and 220 

Mc-T4 classified patients were distributed to several groups of F-T class, F1-T4-, F4-T4-, 221 

and F5-T4-grouped patients only overlapped with Ma-T4 and Mc-T4 groups 222 

(Supplementary Fig. S4D).  223 

In the further comparative cell-to-cell interaction analysis of F1-T4 and F4-T2-224 

subgrouped patients, we found that overall, the number of signaling interactions 225 

between fibroblast and the other cell types was decreased in the F1-T4 subgroup 226 

compared to that of F4-T2 (Supplementary Fig. 4E). Collagen and integrin-mediated 227 

cell-to-cell interactions were primarily lost in the F1-T4 compared to F4-T2, which 228 

implicates plausible roles of collagen and integrin for immune cell activation by fibroblast 229 

(Supplementary Fig. S4F). We also analyzed the mast cells for the classification 230 

(Supplementary Fig. S5A). 3,993 cells were segregated from TME datasets and 231 

processed for calculating transcriptomic similarity (Supplementary Fig. S5B). However, 232 

the difference in transcriptomes represented by Pearson’s correlation was insufficient to 233 

make subgroups. Collectively, fibroblast and T cell-based classification identified the 234 
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most significant differences in F1-T4 and F4-T2 groups with Tex markers expression, 235 

IFN signaling in T cells, and TGF-β signaling in fibroblasts. 236 

 237 

Biomarkers of ESCC subtypes defined by TME transcriptomes 238 

Our analyses found that patients of Ma-T4, Mc-T4, and F1-T4 subgroups have an 239 

immunosuppressive tumor niche, while patients of Mb-T2 and F4-T2 subgroups carry a 240 

tumor-unfavorable niche. Since the tumor niche is generated by the continuous 241 

interaction between tumor cells and TME, it is presumable that tumor niche-based 242 

classification also determines the characteristics of tumor cells. To determine distinct 243 

features of tumors in each group, we sought to identify markers for each group of 244 

patients and assess prognostic effects. In the epithelial cells, we first applied M (myeloid 245 

cells)-T (T cells) classification and found specific genes for Ma-T4 and Mc-T4 (ISG15, 246 

CFL1, PFN1, MYL6, MDK, and UBE2L6), and Mb-T2 (ASNSD1, RHOF, MRPL23, 247 

SNRPD3, and EIF3J) groups (Fig. 6A and 6B). Using F (fibroblasts)-T (T cells) 248 

classification, we also found F1-T4 (TPM2, MYL6, GABARAP, MRPL41, NDUFS8, and 249 

UBE2L6) and F4-T2 (SNRPD3, DNAJB9, EIF3J, EEF1G, and EIF1) specific genes (Fig. 250 

6C and 6D). Intriguingly, we found immunosuppressive Ma-T4 and F1-T4 groups 251 

shared MYL6 (Myosin Light Chain 6) and UBE2L6 (Ubiquitin Conjugating Enzyme E2 252 

L6) genes as biomarkers for tumor cells. Simultaneously, SNRPD3 (Small Nuclear 253 

Ribonucleoprotein D3 Polypeptide) and EIF3J (Eukaryotic Translation Initiation Factor 3 254 
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Subunit J) genes were the overlapped biomarkers in tumor-favorable Mb-T2 and F4-T2 255 

groups of epithelial cells (Fig. 6E-6G and Supplementary Fig. S6A-S6D).    256 

Then we determined the prognostic relevance of those specific genes using the 257 

TCGA database. Among the identified epithelial cell marker genes, we found that higher 258 

expression of UBE2L6 and MYL6 genes from Ma-T4 and Mc-T4 groups and UBE2L6, 259 

MYL6, MRPL41, NDUFS8 (NADH:Ubiquinone Oxidoreductase Core Subunit S8), and 260 

GABARAP (GABA Type A Receptor-Associated Protein)  genes from F1-T4 group was 261 

correlated with poor prognosis (Supplementary Fig. S6E). Meanwhile, ESCC patients 262 

with higher expression RHOF (Ras Homolog. Family Member F) and SNRPD3 genes, 263 

markers of Mb-T2 or F4-T2, showed better prognosis (Fig. 6E and Supplementary Fig. 264 

S6E).  265 

In addition to the biomarkers mainly expressed in tumor epithelial cells, we also 266 

tried to find markers expressed in myeloid cells, T cells, and fibroblasts from assigned 267 

subgroups. From the Ma-T4 and Mb-T2 subgroups in myeloid cells, MS4A6A 268 

(Membrane Spanning 4-Domains A6A) and SNRPD3 were specifically expressed, 269 

respectively, with significant correlation with prognosis. Moreover, SNRPD3 was 270 

repeatedly identified as an Mb-T2-subgrouped T cell biomarker (Supplementary Fig. 271 

S7A-S7E). Next, we identified markers specific to F1-T4 and F4-T2 subgroups of 272 

fibroblasts and T cells (Supplementary Figs. S7F-S7I). S100A10 (S100 Calcium Binding 273 

Protein A10) and FABP5 (Fatty Acid Binding Protein 5), F1-T4 grouped fibroblast 274 

specific markers, were correlated with poor prognosis (Supplementary Fig. S7J). In 275 

contrast, high expression of STK4 (Serine/Threonine Kinase 4), an F4-T2-grouped 276 
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fibroblast-specific marker, was linked to a better prognosis (Supplementary Fig. S7J). 277 

Among the F1-T4 and F4-T2 subgroups-specific genes in T cells, high expression of 278 

BAG3 (Bag Cochaperone 3) and SNRPD3 were correlated with poor prognosis and 279 

better prognosis, respectively (Supplementary Fig. S7K). Interestingly, SNRPD3 was 280 

observed as a better prognostic marker in epithelial cells, myeloid cells, and T cells of 281 

the Mb-T2 subgroup, as well as epithelial cells and T cells of the F4-T2 subgroup. 282 

Therefore, it is likely that SNRPD3 is a robust biomarker for patients with a tumor-283 

unfavorable tumor niche. On the other hand, UBE2L6 is expected to be a potent 284 

biomarker for patients with an immunosuppressive tumor niche, as higher expression of 285 

this gene was observed in the epithelial cells of the Ma-T4, Mc-T4, and F1-T4 286 

subgroups. Based on these findings, we analyzed ESCC tumor microarray (TMA) 287 

samples to assess the expression of UBE2L6 and SNRPD3. UBE2L6 was highly 288 

expressed in 22.2 % (IHC score=3, n=10) of tumor samples, and SNRPD3 was 289 

markedly expressed in 13.3 % (IHC score=3, n=6) of patients (Fig. 6H and 6I). All 290 

UBE2L6high patients showed a relatively lower expression of SNRPD3 (IHC score≤2), 291 

and 5 out of 6 SNRPD3high patients displayed a low expression of UBE2L6 (IHC 292 

score≤2). As identified from datasets, UBE2L6 was detected mainly from tumor cells, 293 

while SNRPD3 staining was positive from TME and tumor cells. These results suggest 294 

that UBE2L6 and SNRPD3 are biomarkers exclusively expressed in ESCC patients, 295 

related to specific patient groups of immunosuppressive or tumor-unfavorable niches, 296 

respectively. 297 

 298 
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Pathological relevance of TME transcriptomics to anti-PD-1 immunotherapy 299 

response 300 

Since we have identified patient subgroups to predict the response to immunotherapy, 301 

we tested if our classification matches the immune cells of patients treated with anti-PD-302 

1 immunotherapy. Patients were grouped into responders (R) and non-responders (NR) 303 

by their sensitivity to the PD-1 antibody treatment. Peripheral blood immune cells from 304 

three responders and three non-responders were collected to compare their phenotypes 305 

to our established classification. Cell types, including T cell, B cell, monocyte, neutrophil, 306 

and platelet, were annotated after integrating six datasets (Figs. 7A-7C). As expected, 307 

Tex markers (TIGIT, HAVCR2, LAG3, and CTLA4) were observed to be highly 308 

expressed in responders than in non-responders, indicating that patients who are 309 

susceptible to ICB exhibit the higher Tex signature in their PBMCs compared to the 310 

PBMCs of other patients (Fig. 7D and Supplementary Fig. S8A). Furthermore, TIGIT 311 

was significantly expressed in CD8 T cells of PBMCs in responders compared to non-312 

responders (Figs. 7D-7F), consistent with our findings from Ma-T4 and Mc-T4 grouped 313 

patients. Therefore, we performed GSEA analysis in responders and non-responders 314 

from their T cell clusters. Then we compared the results with those from T cells of Ma-315 

T4, Mc-T4, and F1-T4 groups. Interestingly, we found that ‘IFN signaling’ was 316 

significantly enriched in responders and Ma-T4, Mc-T4, and F1-T4 (Figs. 7G-7J). PD-1 317 

signaling pathway-related genes were commonly enriched in Ma-T4 and F1-T4 groups 318 

of T cells. Moreover, T cell scoring analysis using PD-1 pathway genes and IFN 319 

pathway genes showed higher scores in responders, Ma-T4, Mc-T4, and F1-T4 groups 320 

compared to non-responders and Mb-T2 groups, respectively (Fig. 7K). These results 321 
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echo the importance of IFN signaling in immunotherapy-sensitive patients, as we found 322 

from Ma-T4- and Mc-T4-grouped patients (Figs. 3G and 3I). ‘PD-1 signaling’ and ‘MHC 323 

class II antigen presentation’ of responders also overlapped with the GSEA results in 324 

Ma-T4/F1-T4 and Mc-T4 groups, respectively (Figs. 7G-7I and Supplementary Fig. 325 

S4B). Then we integrated single-cell transcriptomes of responders and non-responders 326 

with the transcriptomes of previously classified 13 M-T groups of 69 ESCC patients to 327 

test their transcriptomic proximity (Fig. 7L). From principal component analysis and 328 

Pearson’s correlation, the non-responder group was hierarchically closer to Mb-T2 than 329 

to Ma-T4 or Mc-T4. On the other hand, the transcriptome of responders showed a 330 

proximal cluster with Ma-T4 and Mc-T4 compared to Mb-T2 (Fig. 7M). A positive 331 

correlation between responders and Mc-T4 was evident when we narrowed down the 332 

comparison counterparts from 12 categories to 3 (Ma-T4, Mb-T2, and Mc-T4) 333 

categories (Supplementary Fig. 8B).   334 

To evaluate the accuracy of our M-T classifications for immunotherapy, we 335 

compared the prediction results of different patient classifications with those of the M-T 336 

groups. Instead of the separated analyses, such as T cell only or myeloid cell only, post-337 

integration subgrouping of T cell and myeloid cell clusters was performed to construct a 338 

new classification of patients (Supplementary Figs. S8C-S8D). After making this 339 

Myeloid and T cell-combined groups (MT1-MT11), we integrated the patients’ TME cells 340 

datasets with PBMCs datasets of responders and non-responders (Supplementary Fig. 341 

S8E). The new groups were not exclusive to the M-T groups, and the Tex scores were 342 

the highest in the MT2 group in this new classification, while the scores were highest in 343 

the Ma-T4 and Mc-T4 in the M-T classification (Supplementary Figs. S8F-S8H). 344 
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However, these new groups did not segregate responders and non-responders groups 345 

in the correlation analysis, indicating that none of the MT-combined groups (MT1 – 346 

MT11) showed a higher correlation with responders or non-responders groups than the 347 

proximity between responders and non-responders (Supplementary Fig. S8I). We next 348 

compared M-T classifications with patients grouped by Tex cell markers expression. 349 

Using the Tex cell scores in T cells, we grouped patients into four quartiles (High, High-350 

Mid, Mid-Low, and Low). We integrated these data with responders and non-responders 351 

datasets (Supplementary Figs. S8J-S8L). Surprisingly, although most Ma-T4 and Mc-T4 352 

patients were included in High or High-Mid, these Tex cell markers-based groups did not 353 

show a positive correlation with responders (Supplementary Fig. S8M). The same 354 

workflow was used to classify patients based on the mean value (High and Low). 355 

However, the High group still did not show a positive correlation with responders 356 

(Supplementary Figs. S8N-S8Q). These results suggest that our M-T classifications are 357 

more accurate in predicting responders than myeloid-T cells-combined or Tex cell 358 

markers-based categories.      359 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2023. ; https://doi.org/10.1101/2023.02.15.528539doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.15.528539
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18

Discussion 360 

To enhance the efficacy and minimize adverse effects of cancer therapies, it is crucial to 361 

subtype and characterize patients, selecting those who will benefit most from specific 362 

treatments. In this study, we curated a significant number of single-cell transcriptome 363 

datasets from human ESCC patients, establishing precise patient categories based on 364 

TME transcriptomes beyond conventional and molecular pathology (Fig. 8). We 365 

discovered that combining the transcriptional signatures of myeloid cells with T cells (M-366 

T) or fibroblasts with T cells (F-T) can effectively stratify ESCC patients, predicting the 367 

outcomes of immunotherapy treatment. Specifically, patients classified as Ma-T4, Mc-368 

T4, and F1-T4 displayed the Tex cells phenotype in their T cells, suggesting a promising 369 

response to ICB. Conversely, patients categorized as Mb-T2 and F4-T2 were unlikely to 370 

respond to ICB, as their T cells rarely exhibited T cell exhaustion. The prediction of ICB 371 

efficacy was supported by comparing the transcriptomes of patients who had undergone 372 

immunotherapy, where Ma-T4, Mc-T4, F1-T4, and ICB-responders shared the same 373 

signature of IFN signaling, with Mc-T4 exhibiting close transcriptomic proximity to ICB-374 

responders. Although current immunotherapy primarily focuses on Tex cell markers, our 375 

M-T classification was expected to provide a better prediction for ICB response than 376 

grouping patients solely based on these markers. 377 

In addition to selecting patient groups for ICB response, we propose potential 378 

adjuvant therapies to improve ICB treatment efficacy. We have identified the NECTIN2-379 

TIGIT axis as a significant interaction between tumor cells and immune cells in Ma-T4- 380 

or Mc-T4-grouped patients. NECTIN2 interacts with CD226 and TIGIT on the surface of 381 
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T cells, with the latter acting as a competitive inhibitor of CD226.33 TIGIT prevents 382 

CD226 homodimerization by binding to CD226, which suppresses CD226-mediated T 383 

cell activation. 34  Moreover, TIGIT induces immunoregulatory effects by promoting the 384 

maturation of immunoregulatory dendritic cells, Treg cells, and Tex cells. 35-38  TIGIT in 385 

Treg upregulates coinhibitory receptors such as HAVCR2/TIM-3, thus playing a critical 386 

role in immune responses. 35  Recent clinical trials have shown that TIGIT is a promising 387 

new target for ICB, with phase III clinical trials for esophageal cancer (skyscraper-07 388 

and skyscraper-08) ongoing. However, phase II and III clinical trials with lung cancer 389 

patients have generated mixed results, 39, 40 with the latest results showing improved 390 

overall response rate (ORR) and progression-free survival (PFS) when the anti-TIGIT 391 

antibody was combined with the anti-PD-1 antibody in NSCLC patients, 40  but not in 392 

patients with extensive-stage small-cell lung cancer (ES-SCLC). 39  Our findings suggest 393 

that patient selection for ICB treatment needs to be based on additional standards 394 

beyond PD-1 or PD-L1/2 expression in tumors. Categorizing patients into detailed 395 

groups based on TME transcriptomes may improve the efficacy of ICB treatment. 396 

To enhance immunotherapy's efficacy, targeting enriched signaling pathways in 397 

each group would also be promising. For example, suppression of IFN signaling in Ma-398 

T4- and Mc-T4-like patients and TGF-β signaling or interleukin signaling in F1-T4-like 399 

patients might improve ICB efficacy. Although a majority of studies focused on the roles 400 

of the anti-tumor effect of IFN α/β, a recent study revealed that type I IFN protects 401 

cancer cells from T cell-mediated cytotoxicity.41, 42  Furthermore, persistent IFN signaling 402 

activation induces resistance to ICB therapy.41, 43  Accordingly, ISG15, an IFN-403 
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stimulated gene, and UBE2L6 are highly expressed in the tumor cells of Ma-T4- or Mc-404 

T4-grouped patients, as observed in other types of cancer.44, 45  Considering the roles of 405 

ISG15 and UBE2L6 in controlling TP53 stability by ISGylation, IFN signaling enriched 406 

groups might experience frequent intratumoral genetic alterations through the 407 

downregulation of TP53.46, 47 Notably, IFN signaling is specifically activated in the T cells 408 

of PD-1 immunotherapy responders as well as those of Ma-T4, Mc-T4, and F1-T4 (Fig. 409 

7). These results highlight the robustness of IFN signaling across tumor cells and 410 

immune cells in immunotherapy-applicable patient groups, which can serve as an 411 

adjuvant target for immunotherapy. 412 

While our results primarily rely on the transcriptional networks of the TME, we did 413 

not include the transcriptional signatures of tumor cells in identifying biomarkers. 414 

Nevertheless, we identified biomarkers in patient groups despite the inter-tumoral 415 

heterogeneity, suggesting that the expression of these biomarker genes may be 416 

associated with TME-released factors. Notably, IFN-stimulated genes such as ISG15 417 

and UBE2L6 were among the identified biomarkers. In addition to in silico analyses, 418 

future studies are needed to determine the therapeutic impact of anti-TIGIT pathway 419 

inhibitors or IFN signaling inhibitors combined with ICBs on a specific group of 420 

esophageal squamous cell carcinoma patients. Furthermore, examining more datasets 421 

from ICB-experienced patients beyond the six reference datasets (responders and non-422 

responders) we used here will provide a strong demonstration of the accuracy of our 423 

classification. 424 
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This study stratifies ESCC patients based on myeloid, T cell, and fibroblast 425 

transcriptome analysis and proposes potential adjuvant targets to improve cancer 426 

immunotherapy for specific subtypes of ESCC. Additionally, utilizing the most extensive 427 

reference of ESCC TME transcriptome, this study provides new insight into tumor niche 428 

remodeling in ESCC.429 
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Figure Legends 453 

 454 

Figure 1 | Schematic workflow for transcriptomic analysis of TME from ESCC 455 

patients. 456 

 457 

Figure 2 | Immune cells analysis and classification. A, Uniform Manifold 458 

Approximation and Projection (UMAP) display of whole cells from 69 patients. Single-459 

cell RNA-sequencing (scRNA-seq) results of the cells of TME were integrated and 460 

projected  B-C, Non-epithelial cells were isolated, and UMAP was redrawn with 461 

individual patient’s information. (B) and five major cell types (C). D, UMAP display of T 462 

cells subgroup with unique patients ID. T cells were isolated from immune cells and 463 

clustered again. E, T cells were classified into four sub-groups by principal component 464 

analysis (PCA) and Pearson correlation. PCA result was clustered by the dendrogram, 465 

and Pearson correlation was displayed by color spectrum.  F, T cells were displayed in 466 

UMAP based on the sub-groups defined from PCA and Pearson correlation. G, Each 467 

sub-groups of T cells were shown with subsets using stacked bar plots. H, Myeloid cells 468 

of each patient were displayed with UMAP. Myeloid cells were isolated from immune 469 

cells and clustered independently. I, Myeloid cells were categorized into four sub-groups 470 

by PCA and Pearson correlation. PCA results were displayed with a dendrogram, and 471 

Pearson correlation was shown by color spectrum. J, Myeloid cells were displayed with 472 

sub-groups identified from PCA and Pearson correlation. K, Each myeloid cell sub-473 

group was displayed with subsets of myeloid cells. 474 

 475 

Figure 3 | Comparative analysis of patients by myeloid and T cell classifications. 476 

A, Tex cell markers expression in each T cell sub-group. B, The number of patients of T 477 

cell-sub-groups was displayed in each patient’s sub-groups categorized by myeloid cells. 478 

C, The number of myeloid cell-sub-groups was displayed in each patient’s sub-groups 479 

categorized by T cells. The proportion of myeloid-cell-based classified patients in each 480 

sub-group of T cells was shown with pie plots. D, Individual patients were subjected to 481 

each sub-group of myeloid and T cells by Sankey plot. P009A patient was not included 482 

in the myeloid cell-based sub-group due to the lack of myeloid cells in the dataset. Each 483 

patient was classified into 13 groups (M-T groups) by sub-groups of myeloid cells and T 484 

cells and categories. E, Tex cell markers expression in T cells in M-T groups of patients. 485 

F, T cells of each patient from 13 groups were displayed with UMAP. G-H, GESA 486 

analysis was performed in T cells of M-T groups of patients. The results of GSEA from 487 

the Ma-T4 and Mc-T4 groups of patients were compared. GOBP and REACTOME 488 

databases were used, and the significant signaling pathways with positive values of 489 

NES were compared. Overlapped signaling pathways were displayed with a Venn 490 

diagram (G) and enrichment plot (H). I-J, GSEA analysis was performed in T cells of 491 

Ma-T4 and Mb-T2 patients. significant signaling pathways with both positive and 492 

negative valued of NES were compared, and the shared signaling, which has positive 493 

values of NES in Ma-T4 and negative values of Mb-T2 were analyzed. The number of 494 

shared and exclusive signaling in each group was shown in the Venn diagram (I). PD-1 495 

signaling, shared signaling in T cell GSEA analysis of Ma-T4 positive and Mb-T2 496 

negative, was displayed with enrichment plots (J). 497 

 498 
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Figure 4 | Cell-to-cell interactions comparison in M-T groups of patients. A, 499 

Enriched cell-to-cell signaling calculated by CellChat was compared in the Ma-T4 and 500 

Mb-T2 group of patients. T cell exhaustion-related signaling pathways were highlighted. 501 

B, Enriched cell-to-cell signaling calculated by CellChat was compared in the Mc-T4 502 

and Mb-T2 group of patients. T cell exhaustion-related signaling pathways were 503 

highlighted. C, TIGIT expression in the T cells was displayed with feature plots. T cells 504 

of Ma-T4, Mc-T4, and Mb-T2 groups were separated and projected. D, TIGIT 505 

expression in M-T groups was shown with a dot plot. All the cells, including tumor and 506 

immune cells, were compared in each group of patients. E, TIGIT expression in each 507 

cell type was compared. Ma-T4, Mc-T4, and Mb-T2 groups of patients were displayed. 508 

F, TIGIT expression in Tex cells was compared in Ma-T4, Mb-T2, and Mc-T4 sub-groups. 509 

G, Significant interactions within cell types were shown with circle plots. TIGIT and 510 

NECTIN signaling pathways were compared in the Ma-T4, Mc-T4, and Mb-T2 groups of 511 

patients. H, Specific genes related to NECTIN signaling pathways were displayed with 512 

chord plots. The source group of cell types was located on the bottom hemispheres, 513 

and the receiver group was on the top hemispheres. Ma-T4, Mc-T4, and Mb-T2 groups 514 

of patients were compared.  515 

 516 

Figure 5 | Fibroblasts classification and patients grouping with T cell class. A, 517 

Fibroblasts of each patient were isolated and independently analyzed. UMAP labeled 518 

with each patient was shown. B, Fibroblasts were classified into five sub-groups by 519 

principal component analysis (PCA) and Pearson correlation. PCA result was clustered 520 

by the dendrogram, and Pearson correlation was displayed by color spectrum. C, 521 

Fibroblasts classification was displayed in UMAP. D, The number of patients of T cell 522 

sub-groups was displayed in each sub-group categorized by fibroblasts. E, The number 523 

of patients of fibroblast sub-groups was displayed in each sub-group categorized by T 524 

cells. The patient proportion of each fibroblast sub-group was shown on T cell sub-525 

groups with pie plots. F, Sankey plot showing the connection of each patient’s fibroblast 526 

and T cell categories. Patients were re-grouped by fibroblast and T cell categories (F-T 527 

group), and T cells of the patients were shown with the F-T group. G, Tex markers 528 

expression was compared in F-T groups in T cells with dot plots. H, Spatial location of T 529 

cells of F1-T4 and F4-T2 groups were shown on the UMAP. I, Fibroblasts from F1-T4 530 

and F4-T2 groups were subjected to GSEA analysis using the REACTOME database. 531 

Significant signaling pathways were listed with positive values of NES and negative 532 

values of NES. Shared or exclusive signaling pathways between F1-T4 and F4-T2 were 533 

visualized with a Venn diagram. J-K, Overlapped signaling pathways in F1-T4-positive 534 

and F4-T2-negative values of NES from GSEA. Enrichment plots of Signaling by 535 

interleukins (J) and TGF-β signaling in EMT (K) were displayed. 536 

 537 

Figure 6 | Biomarkers of tumor cells based on M-T or F-T groups and their 538 

correlation with prognosis. A-D, Patients’ epithelial cells were grouped by M-T and F-539 

T categories, and each group was projected to DEG analysis. The genes of which high 540 

expression are related to poor prognosis of ESCC patients were highlighted in red. The 541 

genes of which high expression related to better prognosis of ESCC patients were 542 

highlighted in blue. M1-T4- and M3-T4-specific (A) and M2-T2-specific (B) marker 543 

genes were displayed with dot plots. F1-T4-specific (C) and F4-T2-specific (D) marker 544 
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genes were displayed with dot plots. E-G, Identified biomarkers from Ma-T4, F1-T4, Mb-545 

T2, and F4-T2 were displayed with Venn diagram (E), and gene expression in each 546 

group was shown with UMAP (F). Expression of overlapped marker genes shown in the 547 

Venn diagram was compared in Ma-T4, Mb-T2, Mc-T4, F1-T4, and F4-T2 classified 548 

epithelial cells using violin plots (G). H-I, Immunohistochemistry of UBE2L6 and 549 

SNRPD3 from human ESCC were shown with scored heatmap (H) and representative 550 

images (I). IHC scores displayed from 1 (lowest expression) to 3 (highest expression). 551 

Scale bars = 50 μm (lower magnification) and 20 μm (higher magnification). 552 

****p<0.0001. 553 

 554 

Figure 7 | Single-cell transcriptomics of immune cells of anti-PD-1 555 

immunotherapy-treated patients. A-C, Peripheral blood immune cells transcriptomes 556 

of three responders (R) and three non-responders (NR) (to anti-PD-1 ICI) were 557 

integrated and presented with UMAP by cell types (A), patients (B), and response 558 

groups (R vs. NR) (C). D-F, Tex marker genes expression were compared by the anti-559 

PD-1 response (R vs. NR) (D), cell types (E), and T cell subsets (F). G-J, GSEA 560 

analysis performed by responders vs. non-responders using the REACTOME database. 561 

Significant results with positive NES and negative NES were listed with R positive and R 562 

negative, respectively. GSEA results were compared with Ma-T4 (G), Mc-T4 (H), and 563 

F1-T4 (I). Enrichment plots of PD-1 signaling and Interferon signaling were displayed (J). 564 

K, Pathway scores were compared in 3 groups( 1) responders and non-responders, 2) 565 

Ma-T4, Mb-T2, and Mc-T4, 3) F1-T4 and F4-T2) and shown with dotplots. L, single-cell 566 

transcriptomes of immunotherapy-experienced patients were integrated with 69 ESCC 567 

patients’ TME transcriptomes and shown with UMAP by M-T groups and anti-PD-1 568 

response groups. M, Correlation matrix with M-T patient groups and anti-PD-1 response 569 

groups. PCA result was clustered by the dendrogram, and Pearson correlation was 570 

displayed by color spectrum. 571 

 572 

Figure 8 | Schematic representation of this study. Single-cell transcriptomes of 573 

ESCC 574 

 patients’ TME cells were analyzed to predict immunotherapy response and identify 575 

biomarkers and potential adjuvant therapies to improve efficacy. The prediction of 576 

responsiveness was retrospectively validated by examining transcriptomes of ICB-577 

experienced patients’ immune cells. 578 

 579 
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STAR Methods 580 

 581 

RESOURCE AVAILABILITY 582 

 583 

Lead contact 584 

Additional information and requests for resources and reagents should be directed to 585 

and will be fulfilled by the Lead Contact, Jae-Il Park (jaeil@mdanderson.org). 586 

 587 

Materials availability 588 

The materials will be available upon request. 589 

 590 

Data and code availability 591 

scRNA-seq data are available via the National Center for Biotechnology Information 592 

Sequence Read Archive (SRA) under the accession numbers PRJNA777911 and 593 

PRJNA672851. The code used to reproduce the analyses described in this manuscript 594 

can be accessed via GitHub (https://github.com/jaeilparklab/ESCC_project_2) and is 595 

available upon request. 596 

 597 

 598 

METHOD DETAILS 599 

 600 

scRNA-seq data preparation 601 

 602 

Public datasets. The raw read files of ESCC patient datasets were downloaded using 603 

the parallel-fastq-dump package and converted to fastq files. The fastq files were 604 

mapped to the GRCh38 reference genome using CellRanger (v7.0.1) pipeline. The 605 

datasets from 9 patients (NCBI BioProject: PRJNA777911) were utilized to 606 

CellRanger directly, while 60 patients’ datasets (NCBI BioProject: PRJNA672851) 607 

were separately input to CellRanger as CD45+ and CD45- datasets were sorted 608 

during sample preparation. Single-cell dataset and patient information are described 609 

in Supplementary Table 1. 610 

 611 

scRNA-seq data analysis 612 

Integration and clustering. The datasets from 9 patients were preprocessed 613 

independently, and the CD45+ cell clusters were retained for the immune cell 614 

population. 60 patients’ dataset analysis was started with CD45+ sorted datasets. 615 

After preprocessing procedures, 11 patients and 58 patients datasets were integrated 616 

using the “concatenate” function in Scanpy. A batch correction was conducted using 617 

“Harmony” implemented in Scanpy.24  “Louvain” algorithm was used for clustering 618 

cells. Each cell cluster was annotated primarily with “B cell”, “Fibroblast”, “Mast cell”, 619 

“Myeloid cell”, and “T cell” using marker genes of each cluster. T cells were further 620 

annotated with “CD4 T cell”, “CD8 T cell”, “exhausted T cell”, and “effector T cell” and 621 

Myeloid cells were further annotated into “Monocyte”, “Macrophage”, “M1 622 

Macrophage”, and “M2 Macrophage” clusters.  623 
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 624 

Classification of each cell type. “T cell”, “Myeloid cell”, “Fibroblast”, and “Mast cell” 625 

clusters were isolated, and each cell type was analyzed with individual patients. The 626 

transcriptomic similarity of each patient was compared using the correlation matrix 627 

function in Scanpy. Dendrograms were drawn to show PCA proximity, and Pearson 628 

correlation was displayed with color code. Patients were clustered and classified 629 

based on the result of the correlation matrix. Patients were classified by T cell, 630 

myeloid cell, and fibroblast transcriptomes-based categories, then connected 631 

classifications such as Myeloid cell-T cell (M-T) and Fibroblast-T cell (F-T) were 632 

applied to each patient. The connected classification of each patient was visualized 633 

with a Sankey plot using the “pysankey2” package. 634 

 635 

Cell-to-cell interaction analysis. “CellChat” package was used for the cell-to-cell 636 

interaction inference. To acquire intercellular interactions, epithelial cell datasets 637 

were added to immune cell datasets. For 11 patient datasets, excluded CD45-cell 638 

clusters were re-integrated into the immune cell datasets. For 58 patients’ datasets, 639 

CD45+ datasets were analyzed from separated matrix files. After preprocessing 640 

epithelial cells, “epithelial cells”, “effector T cell”, “exhausted T cell”, “CD4 T cell”, 641 

“CD8 T cell”, “M1 macrophage”, “M2 macrophage”, “Macrophage”, “Monocyte”, “B 642 

cell”, “Fibroblast”, and “Mast cell” clusters were merged. M-T or F-T classification-643 

based patient groups were used to generate gene expression matrices for the 644 

CellChat analysis. From significant signaling pathways, “TIGIT” and “NECTIN” 645 

signaling were specified for analysis in each group of patients. Comparative analysis 646 

was performed using two different groups of patients (Ma-T4 vs. Mb-T2 and Mc-T4 vs. 647 

Mb-T2). 648 

 649 

fGSEA analysis. “fGSEA” package was used for the GSEA analysis of Ma-T4, Mb-T2, 650 

Mc-T4, F1-T4, and F4-T2 groups of patients. “Epithelial cells”, “Myeloid cell”, “T cell”, 651 

and “Fibroblast” clusters were independently analyzed to obtain a differentially 652 

expressed gene (DEG) list. DEG was performed in Scanpy with the 653 

“rank_gene_groups” function using the “Wilcoxon” method. “C2” category and 654 

“REACTOME” subcategory or “C5” category and “GO:BP” subcategory were used to 655 

use each database. GSEA results are listed in Supplementary Tables 2 - 656 

Supplementary Table 5. 657 

 658 

PBMCs scRNA-seq data analysis 659 

Integration and clustering. PBMCs scRNA-seq datasets from anti-PD-1 therapy 660 

responders and non-responders were provided by Dr. Haiyang Zhang.48 Three 661 

responders’ and three non-responders’ gene expression matrix files were 662 

independently preprocessed and integrated. The batch effect was reduced by 663 

Harmony algorithm24 , and cell types were annotated with markers used in the 664 

previous study.48  PBMC datasets were further integrated with 69 patients’ human 665 

ESCC datasets with the same workflow and analyzed.  666 

 667 

fGSEA analysis. fGSEA analyses were performed with isolated T cells with DEG lists 668 

between responders and non-responders, as described above. REACTOME 669 
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database was used, and the results were compared with human ESCC patient 670 

fGSEA results. GSEA results of PBMCs are listed in Supplementary Table 6. 671 

 672 

Pathway score analysis. The Pathway scores were performed using the 673 

“scanpy.tl.score_genes” function implemented in the Scanpy package. The analysis 674 

were done with default parameters and the reference genes from MSigDB and other 675 

literature. Reference genes were listed in Supplementary Table 7. 676 

 677 

Kaplan-Meier analysis 678 

The survival of ESCC patients was analyzed based on the gene expression using the 679 

publicly available database (Kaplan-Meier Plotter, http://kmplot.com/analysis). Survival 680 

data of 81 ESCC patients were classified into two groups by gene expression. Patients 681 

were labeled with “high” when the expression of a gene of interest was above the 682 

median expression value, and the others were labeled with “low”. The survival of patient 683 

groups was compared until 70 months, and hazard ratio (HR) and the log-rank P value 684 

(logrank P) were indicated. 685 

 686 

Immunohistochemistry  687 

Immunostaining was performed as previously described.49 ESCC cancer tissue 688 

microarray slides containing 144 samples from 55 patients were provided by Dr. Hiroshi 689 

Nakagawa. Antigens were retrieved from paraffin-embedded tissues using a basic (pH 690 

9.0) buffer. After blocking the tissues in PBS with goat serum, samples were incubated 691 

with primary antibodies (UBE2L6 [1:200] and SNRPD3 [1:200]) Detection was 692 

performed using an HRP-conjugated secondary antibody, followed by DAB. Samples 693 

were counterstained with hematoxylin and mounted with coverslips. The 694 

immunohistochemistry results were scored from 0 to 3, then analyzed and visualized 695 

using R and GraphPad Prism (v9.2.0).  696 

 697 

Statistical analysis 698 

The Student’s t-test was used to compare two groups (n ≥ 3), and a one-way analysis of 699 

statistical variance evaluation was used to compare at least three groups (n ≥ 3). P 700 

values < 0.05 were considered significant. Error bars indicate the standard deviation 701 

(s.d.). All experiments were performed three or more times independently under 702 

identical or similar conditions. 703 

 704 
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Supplementary Information 705 

 706 

 707 

Supplementary information titles 708 

 709 

Supplementary Figure 1. Subtypes of T cells and myeloid cells.  710 

Supplementary Figure 2. Myeloid-T cell (M-T) classification-based analysis in 711 

different cell types. 712 

Supplementary Figure 3. Epithelial cell analysis by myeloid-T cell (M-T) 713 

classification. 714 

Supplementary Figure 4. Cell-to-cell interactions comparison in F1-T4 and F4-T2 715 

groups. 716 

Supplementary Figure 5. Transcriptomic analysis of mast cell cluster. 717 

Supplementary Figure 6. M-T groups- and F-T groups-based biomarkers of TME 718 

cells and their correlation with prognosis. 719 

Supplementary Figure 7. M-T groups- and F-T groups-based biomarkers of TME 720 

cells and their correlation with prognosis. 721 

Supplementary Figure 8. Comparison between responders and non-responders 722 

for anti-PD-1 immunotherapy. 723 

 724 

Supplementary Table 1. The information of single-cell RNA-seq datasets.  725 

Supplementary Table 2. GSEA results of T cells of ESCC patients by M-T 726 

classifications, related to Figure 3. 727 

Supplementary Table 3. GSEA results of epithelial cells and myeloid cells of 728 

ESCC patients by M-T classifications, related to Figure S2. 729 

Supplementary Table 4. GSEA results of fibroblasts of ESCC patients by F-T 730 

classifications, related to Figure 5. 731 

Supplementary Table 5. GSEA results of T cells and epithelial cells of ESCC 732 

patients by F-T classifications, related to Figure S4.   733 

Supplementary Table 6. GSEA results of T cells of anti-PD-1 responders and non-734 

responders, related to Figure 7. 735 

Supplementary Table 7. Gene lists for score analysis, related to Figure 7. 736 

 737 

 738 
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Supplementary Figure Legends 739 

 740 

Supplementary Figure 1 | Subtypes of T cells and myeloid cells. A, Proportion of 741 

cell types in each patient. B, UMAP of T cells with subset clusters. C, Marker genes of T 742 

cell subset expression were displayed with a dot plot. D, Detailed subsets of the T2 sub-743 

group were shown with marker genes. E-F, Detailed subsets in the T2 sub-group were 744 

shI with UMAP (E) and stacked bar plot (F). G, Subsets of myeloid cells were shown 745 

with marker genes expression using a dot plot.      746 

 747 

Supplementary Figure 2 | Myeloid-T cell (M-T) classification-based analysis in 748 

different cell types. A, Tex cell marker genes expressions in T cell-based sub-groups 749 

from T cell cluster. B, Dot plot showing Tex cell marker genes expression and 750 

significance in M-T classified T cells. Each group was analyzed with the rest for each 751 

gene expression, and t-test results were displayed with color spectrum. C, Tex cell 752 

markers expression in each M-T sub-group of T cells. D, Enrichment plot of ‘Interferon 753 

alpha beta signaling’ pathway from GSEA analysis of Ma-T4- and Mc-T4-grouped T 754 

cells. E, The results of GSEA analysis of epithelial cells in Ma-T4 and Mc-T4 groups of 755 

patients were compared. GOBP and REACTOME databases were used, and the 756 

significant signaling with a positive value of NES was compared. Overlapped signaling 757 

pathways were displayed with a Venn diagram. F, Myeloid cells of Ma-T4 and Mc-T4 758 

groups were analyzed with GSEA using GOBP and REACTOME database. Significant 759 

signaling with a positive value of NES was listed and displayed with a Venn diagram. 760 

 761 

Supplementary Figure 3 | Epithelial cell analysis by myeloid-T cell (M-T) 762 

classification. A, Dot plot showing the TIGIT expression in M-T classified epithelial 763 

cells and its significance. TIGIT expression in each group was compared to the rest of 764 

the groups to conduct a t-test. B, NECTIN2 expression in epithelial cells, grouped by M-765 

T classification. C, UMAP display with whole cells. Epithelial cell cluster is highlighted. D, 766 

NECTIN2 expression comparison in M-T classified epithelial cells. E, NECTIN2 767 

expression and significance in each M-T classified epithelial cell group. NECTIN2 768 

expression in each group was compared to the rest of the groups to conduct a t-test. 769 

 770 

Supplementary Figure 4 | Cell-to-cell interactions comparison in F1-T4 and F4-T2 771 

groups. A, Tex marker genes expression in fibroblast-T cell (F-T) classified T cells. The 772 

fraction of cells in the group expressing each gens and significance are displayed. Each 773 

gene in the sub-group was analyzed with the rest of the groups to perform a t-test. B, T 774 

cells grouped by F1-T4 and F4-T2 were subjected to GSEA using the REACTOME 775 

database. A list of pathways with positive or negative NES was displayed with a Venn 776 

diagram. C, GSEA results from epithelial cells of F1-T4 and F4-T2 were listed and 777 

compared with the Venn diagram. D, Patients of myeloid-T cells (M-T) and fibroblast-T 778 

cells (F-T) were compared using the Sankey plot.  E, Comparative circle plot showing 779 

the significant signaling in F1-T4 and F4-T2 groups. The total number of interactions 780 

(top) and interaction weight (bottom) were compared in two groups. Red lines indicate 781 

increased signaling in F1-T4, and blue lines show decreased signaling in F4-T2. F, 782 

Interactions between fibroblast and other cell types were calculated and compared in 783 
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F1T4 and F4-T2 groups. The sources (or ligands) from fibroblast and Receiver (or 784 

receptor) of different cells were displayed with a bubble plot.  785 

 786 

Supplementary Figure 5 | Transcriptomic analysis of mast cell cluster. A, Mast 787 

cells were isolated from non-epithelial cells, and UMAP was re-drawn with individual 788 

patient information. B, Fibroblasts were analyzed by principal component analysis (PCA) 789 

and Pearson correlation. PCA result was clustered by the dendrogram, and Pearson 790 

correlation was displayed by color spectrum. 791 

 792 

Supplementary Figure 6 | M-T groups- and F-T groups-based biomarkers of TME 793 

cells and their correlation with prognosis. A-B, Expression of marker genes of 794 

epithelial cells in Ma-T4, Mc-T4,  and Mb-T2 groups were shown with UMAP (A) and 795 

violin plots (B). C-D, Expression of markers from F1-T4 and F4-T2 classified epithelial 796 

cells with UMAP (C) and violin plots (D). E, Markers from epithelial cells from Ma-T4, 797 

Mb-T2, F1-T4, and F4-T2 categories were evaluated with their prognostic correlation of 798 

ESCC patients using Kaplan-Meier plots. HR, Hazard Ratio. ****p<0.0001. 799 

 800 

Supplementary Figure 7 | M-T groups- and F-T groups-based biomarkers of TME 801 

cells and their correlation with prognosis. A-B, Markers of myeloid cells in Ma-T4 802 

and Mb-T2 groups of patients were shown with dot plot (A), and prognostically 803 

correlated genes were shown with violin plot (B).  C-D, Markers of T cells in Ma-T4 and 804 

Mb-T2 groups of patients were displayed with dot plot (C), and prognostically correlated 805 

gene was shown with violin plot (D). E, Ma-T4 and Mb-T2 groups-specific markers in 806 

myeloid and T cells were evaluated with their prognostic correlation of ESCC patients 807 

using Kaplan-Meier plots. F-G, Markers of fibroblasts in F1-T4 and F4-T2 groups of 808 

patients were shown with dot plot (F), and prognostically correlated genes were shown 809 

with violin plot (G).  H-I, Markers of T cells in F1-T4 and F4-T2 groups of patients were 810 

displayed with dot plot (H), and prognostically correlated genes were shown with violin 811 

plot (I). J, Markers of F1-T4 and F4-T2 groups of fibroblasts were evaluated with their 812 

prognostic correlation of ESCC patients. Kaplan-Meier plots were displayed with an F1-813 

T4 marker (S100A10 and FABP5) and an F4-T2 marker (STK4). K, Markers of F1-T4 814 

and F4-T2 T cell groups were analyzed for their prognostic correlation in ESCC patients. 815 

F1-T4 marker (BAG3) and F4-T2 marker (SNRPD3) were displayed with Kaplan-Meier 816 

plots. HR, Hazard Ratio. 817 

 818 

Supplementary Figure 8 | Comparison between responders and non-responders 819 

for anti-PD-1 immunotherapy. A, Tex markers expression was compared between 820 

responders and non-responders groups. ****p<0.0001. B, Correlation matrix with three 821 

M-T patient groups (Ma-T4, Mb-T2, and Mc-T4) and anti-PD-1 response groups (R and 822 

NR). PCA result was clustered by the dendrogram, and Pearson correlation was 823 

displayed by color spectrum. C-D, T cell and myeloid cell clusters of 69 ESCC patients 824 

were integrated first (C) and subjected to correlation analysis to find 11 myeloid-T cell-825 

combined subgroups (D). E, TME transcriptomes of myeloid-T cell combined subgroups 826 

were integrated with PBMCs transcriptomes of anti-PD-1 responders and non-827 

responders. F, Myeloid-T cell-combined subgroups were compared with M-T 828 

classifications using the Sankey plot. G-H, exhausted T cell scores were assessed in M-829 
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T groups (G) and myeloid-T cell-combined subgroups (H). I, Correlation matrix with 830 

myeloid-T cell-combined subgroups and anti-PD-1 response groups. PCA result was 831 

clustered by the dendrogram, and Pearson correlation was displayed by color spectrum. 832 

J-K, 69 ESCC patients were categorized into 4 quartiles by exhausted T cell score 833 

values (High, High-Mid, Mid-Low, and Low) in T cells (J) and compared with M-T groups 834 

(K). L-M, ESCC patients’ transcriptomes grouped by quartile values were integrated 835 

with transcriptomes of anti-PD-1 responders and non-responders (L), followed by 836 

correlation analysis (M). N-O, Transcriptomes of 69 ESCC patients were divided into 2 837 

groups by mean value of exhausted T cell scores in T cells (N) and compared with M-T 838 

groups (O). P-Q, 69 ESCC patients' TME transcriptomes were integrated with PBMCs 839 

transcriptomes from anti-PD-1-experienced patients (P), and subjected to correlation 840 

analysis (Q) 841 

 842 

 843 

844 
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