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Abstract 19 

Metastatic colorectal cancer (mCRC) is the principal cause of colorectal cancer 20 

(CRC)-related mortality, yet the biology of mCRC remains only partly understood 21 

and remains challenging to interrogate experimentally. Despite recent progress in 22 

mapping recurrent genetic and epigenetic alterations and treatment responses of 23 

mCRC, it provides limited insight into how heterogeneous primary tumors breach 24 

tissue barriers, survive in circulation, and colonize distant organs. In this review, we 25 

summarize current experimental systems for studying mCRC, including genetically 26 

engineered mouse models (GEMMs), carcinogen-induced and transplant models, 27 

and patient-derived organoid (PDO) and xenograft platforms, and discuss how each 28 

captures or fails to capture key steps of the metastatic cascade and organ-specific 29 

microenvironments. We highlight practical obstacles to longitudinal sampling and 30 

quantitative readouts of metastatic burden, as well as conceptual gaps in modelling 31 

immune and stromal influences. Finally, we outline how emerging approaches, 32 

including single-cell and spatial transcriptomics, and advances in longitudinal 33 

tracking of metastatic burden could be combined into an integrated framework that 34 

more faithfully links mechanistic insight to clinical behavior and ultimately, to 35 

metastasis-specific therapies. An overview of the experimental models and 36 

integrative technologies discussed in this review is provided in Fig. 1. 37 

 38 

Introduction 39 
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CRC is among the most common and lethal malignancies worldwide, with an 40 

estimated 1.9 million new cases and 900,000 deaths annually.1 Although early 41 

detection and adjuvant therapy have significantly improved outcomes, mCRC 42 

remains largely incurable and accounts for nearly 90% of CRC-related mortality.2 43 

The liver represents the predominant site of metastasis, followed by the lungs and 44 

peritoneum, reflecting the portal venous drainage of the colon and rectum.3 Despite 45 

the integration of combination chemotherapy, targeted therapy, and, more recently, 46 

immunotherapy, five-year survival for metastatic disease remains below 20%.4 47 

Contemporary management of mCRC combines cytotoxic chemotherapy, anti-48 

VEGF and anti-EGFR or anti-BRAF–based targeted regimens, and—where 49 

applicable—immune checkpoint inhibitors. However, durable benefit is primarily 50 

restricted to molecularly selected subsets of a high level of microsatellite 51 

instability/deficiency in mismatch repair (MSI-H/dMMR). 52 

By contrast, most patients with microsatellite stable (MSS) disease derive limited 53 

benefit and commonly develops primary or acquired resistance driven by clonal 54 

diversity, tumor heterogeneity, cell plasticity, stromal and immune remodeling, and 55 

organ-specific microenvironments5-9. These realities underscore an urgent clinical 56 

need: improving clinical outcomes requires a deeper mechanistic understanding of 57 

the metastatic cascade, including initiation, distant organ colonization, and 58 

subsequent therapeutic resistance.  59 



 4 

Achieving that understanding requires moving beyond descriptive genomics to 60 

mechanism—dissecting the sequential steps of dissemination, intravascular survival, 61 

extravasation, organotropism, niche conditioning, and immune escape in CRC. 62 

However, CRC has been historically difficult to model compared with other solid 63 

tumors; many widely used systems capture primary tumorigenesis but incompletely 64 

recapitulate spontaneous and reproducible metastatic progression and therapeutic 65 

response.10, 11 Robust, disease-relevant preclinical platforms are therefore essential 66 

to translate biological insight into effective interventions for patients.12 Here, we 67 

review the biology of CRC metastasis and the experimental models that support 68 

mechanistic and translational studies, highlighting how to align key biological 69 

questions with the capabilities and limitations of each system. 70 

 71 

Biological programs shaping CRC metastasis 72 

CRC dissemination follows the canonical cascade: local invasion, intravasation, 73 

survival in circulation under shear/oxidative stress, arrest/extravasation (liver-first via 74 

the portal system), niche adaptation and outgrowth, therapy-conditioned relapse.13 75 

This trajectory is gated by tumor-intrinsic programs, including aberrant activation of 76 

key signaling pathways (WNT/β-catenin, MAPK, PI3K, TGF-β, Notch, Hippo/YAP, 77 

and hypoxia/HIFs) together with sequential clonal selection of recurrent driver 78 

mutations in canonical CRC oncogenes (KRAS, BRAF) and tumor suppressor genes 79 

(APC, TP53, SMAD4).13, 14 In the context of genetic alterations, loss-of-function 80 
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mutations in APC, TP53, and SMAD4 and gain-of-function mutations in KRAS and 81 

BRAF collectively sustain WNT and MAPK activation, promote genomic instability 82 

and apoptotic resistance, and subsequently rewire TGF-β from a tumor-suppressive 83 

to a pro-metastatic pathway.14 In parallel, pervasive epigenetic remodeling, including 84 

CpG island hypermethylation (CIMP),15, 16 enhancer/super-enhancer rewiring, 85 

alterations in SWI/SNF and histone modifiers (KMT2C/D, SETD2),17 non-coding 86 

RNA regulators (miRNAs/lncRNAs),15, 18 and alternative splicing16 enables cell 87 

plasticity (epithelial mesenchymal plasticity, secretory/mucinous differentiation),19 88 

immune evasion,20 metabolic flexibility,21 and organ-specific colonization.22  89 

 90 

Molecular subtypes and mCRC 91 

These tumor-intrinsic (genetic and epigenetic) and -extrinsic (immune cells, stromal 92 

cells, extracellular matrix) layers converge on consensus molecular subtypes (CMS), 93 

23 providing  a framework for subtype-adapted therapeutic strategies.24 CMS 94 

classification is based on genetic, epigenetic, and transcriptomic data, which reflect 95 

distinct biological behaviors and clinical outcomes. CMS is an important tool for 96 

personalized medicine in CRC, helping identify which patients are most likely to 97 

respond to specific therapies. Briefly, CMS1 (MSI-immune) displays genomic 98 

instability with strong immune infiltration; CMS2 (canonical) shows epithelial 99 

differentiation with WNT/MYC activation; CMS3 (metabolic) features KRAS 100 

mutations and metabolic reprogramming; and CMS4 (mesenchymal) exhibits 101 
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prominent TGF-/epithelial mesenchymal transition (EMT) signaling with fibroblast- 102 

and angiogenesis-rich stroma.23 Among CMS, the metastatic landscape is 103 

predominantly shaped by CMS2 and CMS4. In metastatic disease, CMS 104 

assignments skew toward CMS2 and 4; notably, CMS4 is enriched in liver 105 

metastases-associates with poorer prognosis and relative resistance to EGFR-106 

targeted therapy, whereas MSI-h/CMS1 is less frequent but may benefit from PD-L1 107 

blockade.25-27 Subtype shifts between primary and metastatic sites further 108 

underscore plasticity and microenvironmental influence.  109 

However, while CMS offers valuable insights, it is crucial to consider additional 110 

molecular subtyping methods. For instance, single-cell RNA (scRNA) sequencing 111 

provides higher resolution, capturing more tumor complexity than CMS based on 112 

bulk RNA-seq and genomics.27 Bulk RNA-seq has limitations in capturing the full 113 

diversity of the tumor microenvironment. It may not represent the cellular 114 

heterogeneity present in tumors, which is essential for understanding metastasis and 115 

therapeutic resistance. These limitations in CMS, particularly when based on bulk 116 

RNA-seq, must be addressed in future studies, with approaches such as multiomic 117 

profiling to provide a more comprehensive view of CRC biology. 118 

Current limitations in studying mCRC 119 

Over the past decade, several reviews have extensively discussed therapeutic 120 

strategies, clinical algorithms, and molecular subtypes of CRC.27 These reviews 121 

collectively highlight the genomic complexity and clinical heterogeneity of the 122 
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disease, with CMS providing a framework for precision therapy.23, 27-29 However, 123 

despite the genomic and transcriptomic granularity achieved in the clinic, our 124 

mechanistic understanding of how CRC spreads and colonizes distant organs 125 

remains limited. 126 

Unlike breast or melanoma models,30, 31 which produce spontaneous and 127 

reproducible metastases,32 CRC models often fail to capture the sequential steps of 128 

dissemination, intravascular survival, and colonization.33, 34 Such gap between 129 

descriptive molecular knowledge and functional metastasis biology largely stems 130 

from experimental constraints. 131 

For instance, classical Apc-mutant mouse models—while most widely used to study 132 

intestinal tumor initiation35, 36—rarely develop distant metastases and often result in 133 

early lethality due to local tumor burden.37 Similarly, inflammation-associated 134 

Azoxymethane (AOM)/Dextran sulfate sodium (DSS) models38 and multi-allelic 135 

combinations such as Apc; Kras; Trp53 mutations34, 39 can recapitulate advanced 136 

adenocarcinomas and tumor progression under chronic colitis. However, they 137 

seldom produce overt distant metastases in vivo.40 This reflects a persistent paradox 138 

in CRC research: despite being one of the most genetically well-characterized 139 

malignancies, faithfully modeling metastatic dissemination in CRC remains 140 

experimentally challenging.41, 42 141 

Furthermore, biological features unique to the colon exacerbate these challenges. 142 

The complex architecture of the intestinal epithelium, its microbiome-rich 143 
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environment, and its dual vascular drainage create a distinct selective landscape for 144 

metastatic evolution.43 The heterogeneity of the tumor microenvironment—ranging 145 

from immune-rich right-sided mucinous tumors to fibrotic, TGF-β–driven CMS4 146 

subtypes—likely further limits the reproducibility of preclinical systems.23, 44 147 

Consequently, most mechanistic insights into CRC metastasis remain inferential, 148 

derived from static genomic correlations rather than dynamic in vivo modeling. 149 

 150 

Experimental constraints on CRC metastasis research  151 

Although CRC has been extensively modeled at the level of tumor initiation, 152 

translating these systems into tractable tools for metastasis research remains 153 

challenging. A major limitation stems less from the mere availability of models and 154 

more from their restricted temporal and spatial resolution, which makes it difficult to 155 

capture how metastatic competence emerges, evolves, and interacts with the host 156 

environment in real time.  157 

 158 

Intrinsic temporal bottlenecks of in vivo experiments 159 

In vivo metastasis studies face fundamental temporal constraints that limit the 160 

ability to capture early dissemination dynamics. Rapid primary tumor expansion 161 

frequently triggers premature humane endpoints, reducing the time window in 162 

which premetastatic niches, circulating tumor cells, or sub-millimeter 163 
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micrometastatic foci can be evaluated in a time-resolved manner.41, 43 These 164 

temporal challenges are further compounded in inducible CRC GEMMs, where 165 

the timing and anatomical distribution of tumor initiation depend heavily on the 166 

properties of the CreERT2 drivers used. In CRC GEMMs, conditional knock-out 167 

(KO) of tumor suppressor genes (Apc or Trp53) or expression of oncogenes (e.g., 168 

KrasG12D), using cell lineage-specific promoters such as Cdx2-CreERT2 or Villin-169 

CreERT2, partly mitigates this issue by enabling tamoxifen-inducible Cre-loxP 170 

genetic recombination in the gut epithelium. Cdx2-based CreERT2 drivers 171 

preferentially target the distal colon and rectum but show regionally restricted and 172 

often incomplete recombination,45 resulting in heterogeneous tumor initiation.46 173 

In contrast, Villin-CreERT2 is active along the intestinal epithelium47 and shows 174 

the strongest expression in small intestinal villus enterocytes with lower levels in 175 

the colon. In practice, a Villin-CreERT2 driver exhibits a leaky (tamoxifen-176 

independent) recombination,47, 48  and recombination efficiencies vary along the 177 

crypt-villus axis, leading to mosaic and asynchronous lesions.49-51 Other gut-178 

specific Cre drivers, such as Lgr5-EGFP-IRES-Cre52 and Fabp1-Cre,51, 53 provide 179 

stem cell- or distal intestine-restricted targeting, respectively, but also introduce 180 

regional biases and variability in recombination efficiency. Consequently, while 181 

these inducible Cre systems are indispensable for modeling CRC and metastasis 182 

in a spatiotemporal manner, they can compromise experimental synchrony and 183 

spatial precision, similar to observations made for other tissue-specific CreERT2 184 

lines.54 185 
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 186 

Spatial restrictions and visualization difficulties 187 

Spatially, the colon’s anatomy itself restricts visualization and manipulation. The 188 

folded mucosa, crypt architecture, and dual blood supply impede intravital 189 

imaging compared with more accessible organs such as the skin or mammary 190 

gland.55 Consequently, even when metastatic dissemination occurs, its earliest 191 

stages—local invasion and intravasation—often go unrecorded. Recent 192 

advances in two-photon56,57, 58 and light-sheet microscopy59 have improved 193 

visualization of intestinal tumors, but sustained imaging over weeks remains 194 

technically and ethically challenging in live animals.55, 60 195 

 196 

Immune and stromal context 197 

Another barrier of mCRC preclinical models lies in biological reproducibility. 198 

Unlike breast or melanoma models that metastasize in a predictable manner,61-
199 

63 CRC models often display considerable inter-animal variability in tumor burden 200 

and metastatic frequency, including in matched-littermate settings where driver 201 

genotypes are identical. Differences in inbred background (C57BL/6 vs. FVB/N), 202 

64, 65 sex,66 and breeding cohort67 can modulate the penetrance of spontaneous 203 

or GEMM-based colorectal tumors and liver metastases, so that Apc-driven 204 

strains show distinct polyp multiplicity, anatomical distribution, and metastatic 205 

propensity.68, 69 Factors such as microbiome composition, diet, cage environment, 206 



 11 

and inflammation further influence tumor behavior.70 These variables are rarely 207 

standardized across laboratories, resulting in inconsistent metastatic frequency 208 

and anatomical tropism.  209 

Immune and stromal context of CRC resists reductionist modeling. Subtypes 210 

such as CMS1 and CMS4 represent immunologically opposite extremes—one 211 

enriched for cytotoxic lymphocytes, the other dominated by fibroinflammatory 212 

stroma—yet both can metastasize.23, 25, 27 Recapitulating these divergent 213 

ecosystems requires integrating epithelial, immune, and mesenchymal 214 

components within the same experimental system, a feature that remains largely 215 

unsolved. Even organoid or patient-derived xenograft (PDX) platforms, while 216 

powerful for molecular analysis, fail to fully recapitulate dynamic immune 217 

surveillance or the remodeling of premetastatic niches in distant organs.71-74 218 

Stem cell hierarchy and plasticity in mCRC 219 

Beyond stromal and immune heterogeneity, the hierarchical organization of CRC 220 

adds another layer of complexity to metastasis modeling. Cell lineage-tracing 221 

studies have demonstrated that Lgr5⁺  tumor cells possess the distinct capacity 222 

to initiate and sustain distant metastases, whereas Lgr5⁻  progenitors show 223 

limited seeding potential and fail to maintain long-term growth in secondary 224 

sites.75, 76 However, Lgr5⁺  cells display plasticity, as Lgr5⁻  populations can 225 

reacquire stem-like properties under selective pressure, challenging the concept 226 

of a fixed metastatic hierarchy.76 Current GEMMs and organoid systems capture 227 
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aspects of this cell plasticity but still fall short of reproducing its dynamic 228 

regulation by the microenvironment.71, 72 229 

These challenges partly explain why progress in CRC metastasis research has 230 

lagged molecular characterization. They also highlight a conceptual gap: current 231 

models allow us to describe which genetic and epigenetic events occur, but not 232 

when, where, or under what ecological pressures metastatic potential arises. 233 

Bridging this gap will require longitudinal, multi-scale approaches that integrate 234 

imaging, lineage tracing, and omics under physiologically relevant conditions. 235 

 236 

 237 

Preclinical models 238 

Over the past three decades, multiple experimental platforms have been developed 239 

to model CRC and metastasis. Despite substantial progress in capturing genetic 240 

diversity and therapeutic responses, these systems rarely reproduce the sequential, 241 

spontaneous nature of human metastatic disease. In vivo, CRC cells derived from 242 

these platforms are typically introduced into mice through a few standard routes—243 

subcutaneous flank injection, orthotopic implantation into the cecal or rectal wall, and 244 

intrasplenic, portal-vein, or tail-vein injection—which in turn determine whether 245 

primary tumor growth, liver metastasis, or lung colonization is modeled. Each 246 

preclinical model—ranging from cell lines to organoids, PDXs, and GEMMs—offers 247 
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complementary insights yet constrained by distinct structural, temporal, and 248 

translational limitations that collectively hinder mechanistic discovery. 249 

 250 

Cell lines 251 

Cell line-based models remain the most accessible and widely used tools in CRC 252 

research.77 They are inexpensive, easy to propagate and cryopreserve, and 253 

highly amenable to genetic manipulation and high-throughput drug screening, 254 

and many lines are characterized at the genomic and pharmacologic levels. 255 

Human cell lines78 such as SW480, SW620, and HCT116, together with murine 256 

cell lines MC38 and CT26,79 have provided invaluable insights into oncogenic 257 

signaling, drug sensitivity, and epithelial–mesenchymal transition (EMT).80 258 

SW480 and SW620, derived from primary colon tumors and a lymph-node 259 

metastatic carcinoma from the same patient,78 respectively, offer a convenient 260 

paired system to compare molecular features associated with metastatic 261 

progression.81 262 

In vivo, these cell lines are most frequently used as cell line–derived xenografts. 263 

Subcutaneous implantation is the workhorse for tumor growth and drug-response 264 

studies, whereas the same lines can be used in orthotopic or intrasplenic/portal-265 

vein models described above to interrogate specific steps of metastatic 266 

dissemination. 267 
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However, long-term culture often leads to clonal drift, copy-number alterations, 268 

and transcriptomic divergence from the parental tumor.82 Most cell lines 269 

represent late-stage or poorly differentiated tumors that have lost the hierarchical 270 

organization and cellular heterogeneity characteristic of in vivo lesions.83, 84 271 

Furthermore, monolayer culture lacks stromal and immune components, 272 

eliminating the paracrine and mechanical cues essential for invasion and 273 

metastasis. Even the frequently cited SW480-SW620 pair captures only a 274 

snapshot of metastatic disease and does not recapitulate the dynamic, stepwise 275 

evolution of dissemination observed in patients. Thus, while CRC cell lines 276 

remain indispensable for reductionist mechanistic studies and scalable 277 

pharmacologic screens, their limited architecture and inability to represent full 278 

tumor heterogeneity must be carefully considered when extrapolating findings to 279 

human disease.  280 

 281 

Patient-derived organoids (PDOs)  282 

CRC organoids recapitulate histopathological features and allow genetic 283 

manipulation via CRISPR or shRNA,85 enabling systematic interrogation of key 284 

genetic alterations associated with CRC metastasis. Drug screening studies 285 

have shown notable concordance between organoid responses and clinical 286 

outcomes.86 Beyond in vitro profiling, organoid platforms are also used directly to 287 

model mCRC in vivo. Orthotopic transplantation of genetically engineered human 288 
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or murine CRC organoids into the cecal or rectal mucosa generates primary 289 

tumors that can spontaneously seed liver and lung metastases, enabling 290 

stepwise analysis of invasion, dissemination, and distant colonization in a 291 

controlled genetic and microenvironmental context.87-89 Portal- or mesenteric-292 

vein injection of organoid-derived cells produces stroma-rich liver lesions that 293 

recapitulate the fibroinflammatory niche of human CRC liver metastases and can 294 

be used to test stromal or niche-targeted interventions.90, 91 Syngeneic 295 

transplantation of genetically engineered murine organoids into 296 

immunocompetent hosts similarly preserves an intact immune system and has 297 

been leveraged for in vivo CRISPR-based screens to uncover metastasis drivers 298 

and therapeutic vulnerabilities92 (see ‘Genetically engineered murine organoids 299 

for syngeneic transplantation’ for details).   300 

However, organoids remain inherently reductionistic, lacking the vasculature, 301 

fibroblasts, immune cells, and organized extracellular matrix (ECM) organization 302 

necessary for invasion and metastasis.93-96 Assembloids, co-culture systems 303 

combining organoids with cancer-associated fibroblasts or lymphocytes, have 304 

improved physiological relevance, but reproducibility and scalability are limited.72, 
305 

97, 98 Standardized media formulations, batch effects, and stromal cell sourcing 306 

continue to confound inter-laboratory comparisons.99 307 

 308 

Organoid-on-chip and microfluidic co-cultures 309 
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Engineering efforts recently combined PDOs with microfluidic “organ-on-chip” 310 

devices to control endothelial cells, shear stress, oxygen, and nutrient gradients. 311 

These platforms enable direct observation and quantification of invasion, 312 

transendothelial migration, and early steps of dissemination, and they can be 313 

extended to drug and immune-response testing as well.100-102  314 

In the context of mCRC, these devices have been used to model specific steps 315 

of the metastatic cascade. A CRC-on-chip system combining PDOs with 316 

perfused endothelial channels reconstructed the colonic mucosa-submucosa 317 

interface and enabled live imaging and quantification of invasion and 318 

intravasation under defined stromal and flow conditions.100 Multi-organ 319 

“metastasis-on-a-chip” platforms linking a colon tumor compartment seeded with 320 

CRC spheroids to downstream liver-like microtissues have been used to study 321 

colon-to-liver extravasation, early hepatic outgrowth, and responses to anti-322 

angiogenic or anti-metastatic agents.103, 104  323 

Beyond chip devices, 3D microfluidic platforms that co-culture organoids with 324 

endothelial cells generate self-organized microvascular networks and visualize 325 

tumor–vessel interactions. These proofs-of-concept quantify increased 326 

angiogenic sprouting, changes in vascular permeability, and chemotactic 327 

coupling between tumor cells and endothelium—key dynamics of the pre-328 

seeding phase of metastasis.105 Broader syntheses emphasize how flow and 329 

shear stress modulate endothelial barriers, angiogenesis, and drug distribution 330 

in 3D co-cultures.102, 106 Despite these advantages, organoid-on-chip and 331 
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microfluidic co-culture systems have significant limitations. Matrices and flow 332 

regimens are often non-physiologic or poorly standardized, so readouts can shift 333 

with lot-to-lot changes in ECM composition, stiffness, shear stress, or oxygen 334 

tension.107 Stromal and endothelial cells frequently lose their phenotypes over 335 

time, and adaptive immune cells rarely maintain stable function, restricting 336 

studies of immunoediting and immunotherapy.108-110 Device materials can adsorb 337 

hydrophobic drugs and cytokines, while chip-to-chip and donor-to-donor 338 

variability, manufacturing cost, and operator dependency hinder scalability and 339 

reproducibility.109, 110 Most platforms also lack lymphatic drainage, innervation, 340 

and multi-organ crosstalk.107 For translational use, careful control and reporting 341 

of physical parameters, standardized media/ECM formulations, and side-by-side 342 

validation against in vivo benchmarks will therefore be essential.111, 112 343 

 344 

Patient-derived xenografts (PDXs) 345 

PDXs offer higher fidelity in maintaining tissue architecture and inter-patient 346 

variability.99, 113 By implanting patient tumor fragments into immunodeficient mice, 347 

PDXs preserve clonal heterogeneity and histological features, making them 348 

valuable for drug efficacy and resistance modeling.114, 115  349 

In metastasis research, PDXs can recapitulate patient-specific patterns of 350 

organotropism and enable evaluation of metastatic outgrowth in a clinically 351 

relevant genomic and stromal context.116, 117 Several studies have shown that 352 
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orthotopic or circulation-based PDX implantation can generate spontaneous liver 353 

or lung metastases, allowing functional interrogation of metastatic potential and 354 

therapy response.118 355 

Nevertheless, their dependence on immune-compromised hosts (e.g., Nude or 356 

Severe Combined Immunodeficient [Scid] recipient mice) prevents analysis of 357 

immune surveillance, tumor-immune crosstalk, and immunotherapy response.114 358 

Moreover, human and mouse species barriers differ in cytokine signaling, 359 

extracellular matrix composition, and microbiome, distorting stromal remodeling 360 

and metastatic niche formation.94, 119, 120 Although PDX models incorporating 361 

human immune cells using humanized mice are emerging, they remain 362 

technically demanding, expensive, and short-lived due to graft-versus-host 363 

reactivity.113, 121-123 364 

 365 

GEMMs  366 

Early CRC GEMMs, such as ApcMin/+ mice, recapitulate the classical adenoma-367 

carcinoma sequence in the small intestine but rarely progress to frank invasion 368 

or distant metastasis, limiting their utility for metastasis research. To promote 369 

malignant progression, conditional alleles of Apc, KrasG12D and Trp53 have been 370 

combined with intestine-specific and tamoxifen-inducible Cre drivers (Table 1). 371 

Upon tamoxifen administration, Villin-CreERT2; Apcfl/fl; KrasG12D mice generate 372 

numerous adenomas throughout the intestinal tract but largely retain a non-373 
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invasive phenotype without macroscopic metastases,124 whereas Cdx2-CreERT2-374 

based models restrict recombination to the distal intestine and colon, yielding 375 

invasive adenocarcinomas with prominent desmoplastic stroma that more closely 376 

resemble human CRC, yet still without significant and consistent distant spread. 377 

125-127  378 

Further pathway engineering has enabled genuine metastatic behavior in a 379 

subset of GEMMs. For example, adding biallelic Trp53 loss to Villin-CreERT2; 380 

Apcfl/fl; KrasG12D accelerates malignant transformation and produces highly 381 

invasive colon tumors with histologically confirmed liver metastases.39 Similarly, 382 

Fabp1-Cre-driven deletion of Apc and Tgfbr2 alleles on a KrasG12D background 383 

yields TGF-β-signaling-deficient carcinomas with desmoplastic stroma, of which 384 

10-20 % give rise to spontaneous liver metastases.128 These models 385 

demonstrate that appropriate combinations of WNT, RAS, p53, and TGF-β 386 

pathway alterations drive stepwise progression from adenoma to invasive 387 

carcinoma and, in a fraction of animals, clinically relevant hepatic dissemination.   388 

Despite these advances, CRC GEMMs still exhibit several practical limitations. 389 

Tumor latency and penetrance are highly variable between strains. Even in 390 

“metastatic” models, the frequency and timing of liver lesions remain inconsistent, 391 

which complicates adequately powered metastasis studies. Disease progression 392 

is also strongly modulated by host-intrinsic variables such as microbiome 393 

composition, diet and background inflammation, contributing to substantial inter-394 

animal heterogeneity under nominally identical genotypes.129-132 Moreover, most 395 
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GEMMs develop multifocal primary tumors and early intestinal morbidity that 396 

restrict the time window available to interrogate pre-metastatic niches or to 397 

impose therapeutic interventions. Thus, while GEMMs provide an 398 

immunocompetent setting and faithfully model de novo tumorigenesis, their 399 

structural and temporal constraints necessitate complementary platforms—400 

including organoid-based orthotopic and patient-derived xenograft models—to 401 

fully dissect the mechanisms of CRC metastasis (Table 1).  402 

 403 

Genetically engineered murine organoids for syngeneic transplantation  404 

Several groups have recently used tumor organoids derived from the intestine of 405 

GEMMs and re-implanted them orthotopically into syngeneic hosts.87, 88, 133 406 

KrasG12D Trp53 KO murine intestinal  organoids, when transplanted into the distal 407 

colon, generate locally invasive adenocarcinomas that remain largely confined to 408 

the bowel wall, thus providing a technically tractable platform to interrogate 409 

invasion in a colon-restricted microenvironment without consistent distant 410 

spread.45, 134 Apc KO KrasG12D Trp53 KO intestinal organoids transplanted into 411 

the cecum reproducibly form desmoplastic primary tumors and, in a subset of 412 

mice, give rise to liver or lung lesions, capturing early metastatic escape in a 413 

genetically well-defined setting.89, 135 414 

Rationally engineered quadruple-mutant organoids harboring Apc KO, KrasG12D, 415 

and Trp53 KO along with Smad4 deletion further increase metastatic efficiency. 416 
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TGF-β signaling plays a well-established, context-dependent role in cancer 417 

progression:136 while it restrains epithelial proliferation in early disease, in 418 

advanced tumors it is frequently coopted to drive EMT, immune suppression, and 419 

metastatic niche formation across multiple cancer types.137 In CRC, genetic 420 

disruption or pathway rewiring of TGF-β/SMAD signaling is associated with poor 421 

prognosis,138 mesenchymal CMS4-like phenotypes, and a higher propensity for 422 

liver metastasis.137, 139, 140 In line with this, organoids derived from Tgfbr2fl/fl; 423 

KrasG12D; Trp53fl/fl GEMMs, when introduced into the cecal wall or via splenic 424 

injection, exploit the portal circulation to establish reproducible liver metastases, 425 

highlighting the role of TGF-β signaling loss in invasive behavior and hepatic 426 

colonization.137, 141  427 

Organoid-based orthotopic models preserve key strengths of GEMMs—tumor 428 

growth in an immunocompetent host and within native stromal architecture—429 

while being easier to control experimentally. Defined organoid genotypes and 430 

implantation sites allow more synchronized tumor onset, permitting side-by-side 431 

imaging and treatment across cohorts. However, engraftment and metastatic 432 

yield remain variable, and the immune and microbial environment is still purely 433 

murine. These hybrid systems are therefore regarded as a complementary 434 

platform rather than a replacement for autochthonous models, well suited to 435 

mechanistic studies of the earliest phases of invasion, intravasation, and liver 436 

seeding. 437 

 438 
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Orthotopic transplantation models in PDX/PDO systems 439 

In the clinical translation space, most PDX work has relied on transplantation 440 

paradigms based on either subcutaneous or orthotopic engraftment of patient-441 

derived colorectal tumor tissues. In conventional flank xenografts, CRC cell lines 442 

or small PDX fragments are implanted under the skin of immunodeficient mice, 443 

which makes it easy to monitor and quantify in a non-invasive manner.113, 142,143 444 

This ectopic setting, however, provides only a rudimentary stromal and vascular 445 

niche and therefore offers limited insight into how colorectal tumors invade, 446 

disseminate, and colonize distant organs.37, 143-145 While it does not support 447 

spontaneous metastasis, non-invasive bioluminescence imaging (IVIS) can 448 

partially compensate for this limitation by enabling longitudinal tracking of tumor 449 

burden and early dissemination dynamics. 450 

Orthotopic transplantation protocols instead place PDOs or established CRC 451 

cells into the cecum, rectum, or colonic wall of immunocompromised hosts—452 

typically by surgical implantation or intraluminal injection.146, 147 Tumors arising 453 

from these procedures grow along the natural mucosal and vascular axes of the 454 

intestine and often reproduce the characteristic pattern of colorectal spread, 455 

including liver involvement in a subset of animals.87, 148-151 In selected CRC 456 

orthotopic models, primary cecal or rectal tumors can be surgically debulked or 457 

resected to isolate metastatic outgrowth and extend the observational window for 458 

liver metastasis, a strategy that has been adopted in a few recent CRC 459 

metastasis protocols.152 However, routine resection of intracecal or intrarectal 460 
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primaries is technically demanding, risks disrupting bowel continuity and portal 461 

drainage, and can negatively affect animal welfare; consequently, many CRC 462 

orthotopic metastasis studies still leave the primary lesions in place and assess 463 

metastatic burden in their presence.153 154 464 

Orthotopic PDX/PDO models are better suited than subcutaneous implants for 465 

testing site-specific therapies and for mapping the routes by which human CRC 466 

cells reach the portal circulation. That said, they remain technically demanding, 467 

with engraftment rates and metastatic yield influenced by injection depth, local 468 

stromal compatibility, and operator experience.155, 156 The obligatory use of 469 

immunodeficient strains also indicates that adaptive immune surveillance and 470 

human-liver crosstalk are only partially captured, so these systems complement 471 

rather than replace immunocompetent GEMM-based models in the metastasis 472 

toolkit.157, 158 473 

 474 

Orthotopic co-engraftment (enhanced models) 475 

Recent studies using orthotopic co-engraftment of CRC organoids with patient-476 

matched fibroblasts or endothelial cells report increased metastatic seeding 477 

efficiency, underscoring that stromal cues are rate-limiting for successful 478 

colonization. A large matched CRC organoid–stroma biobank further showed 479 

that co-culture with patient-matched cancer-associated fibroblasts (CAFs) 480 

restores stromal/CMS-related programs, improves transcriptional fidelity, and 481 
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sharpens functional readouts of drug response and stromal resistance 482 

mechanisms.106 Standardized protocols for simultaneous tumor-plus-stroma 483 

orthotopic cecum/rectum implantation enable analysis of growth, invasion, and 484 

intravasation, while noting take-rate variability with injection depth, stromal 485 

compatibility, and operator experience.159  In portal-vein models, CRC organoids 486 

elicit a fibroblast-rich desmoplastic response that recapitulates human CRC liver 487 

metastases stroma, facilitating studies of metastatic seeding and niche-directed 488 

therapies.160 Orthotopic PDXs likewise display spontaneous liver/lung 489 

dissemination and reveal associations between metastatic lesions, partial 490 

mesenchymal-epithelial transition (MET)/stemness programs, and TGF-β 491 

signaling—features well suited for probing the dynamics of dissemination and 492 

colonization.118 Collectively, co-culture/co-engraftment with CAFs and 493 

endothelial cells supports a functional view that stromal cues govern metastatic 494 

seeding efficiency, linking in vitro chips, ex vivo microfluidics, and in vivo 495 

orthotopic/portal-vein systems along one mechanistic continuum. 496 

 497 

Longitudinal imaging and metastatic modeling  498 

Despite these advances, longitudinal monitoring of metastatic progression 499 

remains challenging because of anatomical inaccessibility and the need for 500 

advanced imaging modalities, such as Magnetic Resonance Imaging (MRI), 501 

Magnetic Resonance Cholangiopancreatography (MRC), micro-computed 502 
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tomography (micro-CT), Positron Emission Tomography (PET), and In Vivo 503 

Imaging System (IVIS).161-165 These modalities have limited sensitivity for 504 

detecting sub-millimeter micrometastases, and optical signals are subject to 505 

depth-dependent attenuation, which reduces the quantitative accuracy of 506 

longitudinal comparisons.166, 167 Repeated imaging is further constrained by the 507 

need for anesthesia or radiation exposure, limiting temporal resolution. Serial 508 

sampling of metastatic foci is largely infeasible, preventing direct interrogation of 509 

early extravasation, micrometastatic persistence, and early outgrowth stages167-
510 

169.  511 

In addition to orthotopic approaches, experimental metastasis models—notably 512 

intrasplenic and portal vein injections—are used to study hepatic colonization. 513 

Intrasplenic injection delivers tumor cells into the portal circulation and 514 

reproducibly seeds the liver,170, 171 whereas direct portal vein injection bypasses 515 

the spleen and enables tighter control of metastatic burden and timing.160, 172, 173  516 

These methods provide technically consistent and readily quantifiable 517 

information for metastatic kinetics, angiogenesis, and therapeutic responses, 518 

while they primarily model later stages of metastasis—circulatory survival and 519 

colonization—rather than the early steps of local invasion and dissemination. 520 

Longitudinal readouts often require advanced imaging.172, 174  521 

Together, orthotopic and experimental metastasis models occupy a critical 522 

intermediate position between PDXs and GEMMs. Orthotopic implantation 523 

preserves key epithelial–stromal interactions and spontaneous dissemination, 524 
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whereas splenic and portal vein injections enable reproducible quantification of 525 

hepatic seeding. Yet, all remain constrained using immunodeficient hosts and by 526 

incomplete reconstruction of immune and stromal complexity. Integrating these 527 

models with advanced imaging, immune-competent backgrounds, or humanized 528 

microenvironments will be essential for more physiologically faithful investigation 529 

of mCRC. 530 

 531 

New technologies and integrative approaches 532 

The recent convergence of single-cell transcriptomics, genomics, spatial 533 

transcriptomics, and computational modeling has begun to bridge the long-standing 534 

divide between molecular characterization and functional metastasis biology. These 535 

technologies provide unprecedented resolution to dissect when, where, and how 536 

CRC cells acquire metastatic competence—an aspect that classical experimental 537 

systems fail to capture. However, widespread adoption of these emerging platforms 538 

remains constrained by high costs, specialized instrumentation and bioinformatics 539 

expertise, and limited access to high-quality fresh clinical specimens, which can 540 

restrict implementation across institutions. 541 

 542 

Single-cell and Spatial transcriptomics: Reconstructing missing dynamics 543 
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Single-cell RNA-seq atlases of primary CRC and matched liver metastases have 544 

revealed marked epithelial and immune heterogeneity, with distinct metastatic 545 

ecosystems that differ from primary tumors.175, 176 In liver metastases, integrated 546 

single-cell and spatial profiling has identified transcriptional programs associated 547 

with EMT and invasive behavior, including BHLHE40-driven EMT programs that 548 

promote metastatic spread.177 Single-cell and spatial mapping of CRC liver 549 

metastases further charted immune evolution across treatment and unveiled how 550 

tumors respond to neoadjuvant chemotherapy.178 Spatially resolved analyses of 551 

CAFs show that CTHRC1+ fibroblast subsets act as major sources of WNT5A, 552 

promote EMT, and are linked to poor prognosis. CAF-immune-epithelial crosstalk 553 

is topographically organized within tumors.179-181 Recent work on the pre-554 

metastatic niche extends these insights, demonstrating that Prok2⁺  neutrophils, 555 

tumor-derived small extracellular vesicles, and other systemic cues establish 556 

inflammatory and immunosuppressive liver microenvironments that favor CRC 557 

seeding.182,183 Together, single-cell and spatial data give a much more detailed 558 

view of which cells and niches drive metastasis than bulk RNA-seq. Nonetheless, 559 

single-cell and spatial transcriptomics still miss fragile or deep-lesion cells184, 185 560 

and are difficult to combine consistently across patients and different 561 

platforms.186  562 

 563 

Multiomics integration  564 
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Multiomics studies that combine genomic, transcriptomic, epigenomic, and 565 

proteomic data in primary CRC and liver metastases have begun to 566 

systematically link recurrent driver alterations with downstream pathway 567 

changes.187, 188 Proteogenomic analyses of matched normal, primary tumor, and 568 

liver metastasis triplets integrating whole-exome sequencing, RNA-seq, single-569 

nucleotide polymorphism (SNP) arrays, and quantitative mass spectrometry 570 

have identified copy number-mRNA-protein-correlated modules and metastasis-571 

enriched molecules, nominating candidates such as COL1A2, BGN, MYH9, and 572 

CCT6A with prognostic relevance.187 In CRC organoids, integrated analysis of 573 

the transcriptome, (phospho)proteome, and secretome has shown that SMAD4 574 

inactivation leads to reduced epithelial differentiation, activation of pro-migratory 575 

and proliferative programs, disruption of TGF-β, WNT, and VEGF signaling, and 576 

increased secretion of proteins involved in pro-metastatic processes, illustrating 577 

how multi-layer measurements map the consequences of a single driver lesion 578 

across regulatory levels.189 579 

Integrating genomic, transcriptomic, epigenomic, proteomic, and metabolomic 580 

data across patients and studies remains technically challenging. Heterogeneous 581 

assay performance, missing data, and variation in biospecimen handling, library 582 

preparation, and analysis workflows introduce batch effects and other systematic 583 

biases. Computational tools such as Harmony, MOFA+, and multimodal 584 

Seurat190-192 help align data from different patients and assays into a shared 585 

space and identify common patterns, but batch effects, uneven sampling, and 586 
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limited proteomic and metabolomic depth still make metastasis-associated 587 

signatures noisy and difficult to reproduce.193-196 588 

 589 

Computational modeling 590 

Computational modeling has become central for synthesizing these high-591 

dimensional data into mechanistic hypotheses about metastatic behavior. Hu et 592 

al. combined spatial tumor growth modeling with statistical inference of matched 593 

primary CRC and metastatic exomes to estimate dissemination timing, showing 594 

that metastases are frequently seeded early while the primary lesion remains 595 

clinically undetectable, thereby challenging a strictly late-stage linear progression 596 

model.197 Using multiregional whole-genome and exome data across primary 597 

tumors, multiple metastases, and PDXs, Dang et al. reconstructed clonal 598 

relationships and seeding patterns, revealing therapy-shaped evolutionary 599 

branching with both mono- and polyclonal dissemination and instances 600 

consistent with parallel or metastasis-to-metastasis spread.198 These 601 

reconstructions align with agent-based and multiscale models that simulate 602 

clonal competition, spatial constraints, and microenvironmental feedback to 603 

generate testable predictions about metastatic outgrowth, recurrence timing, and 604 

treatment resistance; West et al. highlighted how these frameworks translate 605 

multi-scale data into explicitly mechanistic, hypothesis-driven simulations 199. 606 

Consistent with this view, recent cell lineage-tracing work that couples high-607 
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complexity genetic barcoding with single-cell transcriptomics in esophageal 608 

preneoplasia quantitatively maps precursor cell dynamics and lineage plasticity, 609 

providing ground-truth constraints for evolutionary models of early neoplastic 610 

progression.144 Dynamical systemic approaches that quantify epithelial 611 

mesenchymal plasticity and its association with stemness and immune escape 612 

provide a useful framework for interpreting the diverse metastatic cell states 613 

observed in single-cell datasets.200 As multiomic and spatial CRC resources 614 

expand, iterative cycles between in silico modeling and in vivo or ex vivo 615 

perturbation should increasingly shift metastasis research from retrospective 616 

description toward predictive modeling of metastatic fitness landscapes and 617 

therapeutic vulnerabilities199, 201-204.  618 

Despite remarkable advances in molecular profiling and model development, 619 

metastasis remains one of the most challenging biological frontiers. The 620 

persistent gap between descriptive genomics and functional understanding 621 

stems from both biological complexity and experimental constraints. 622 

Nevertheless, combining next-generation profiling tools such as single-cell and 623 

spatial transcriptomics with innovative model systems including GEMM, organoid 624 

models and humanized mice, promises to bridge these long-standing divides. A 625 

unified framework integrating temporal, spatial, and molecular dimensions may 626 

further illuminate how colorectal cancer metastasizes—and why it so often resists 627 

cure. 628 

 629 



 31 

Conclusions and future perspectives  630 

Future progress will depend on constructing a multi-layered ecosystem of 631 

experimental and computational approaches. Integrating organoid-based co-632 

cultures, lineage-traced GEMMs, and spatial-omics-guided human tissue analysis 633 

can help connect molecular alterations to functional outcomes. Additionally, 634 

collaborative metastatic biobanks and standardized computational pipelines will be 635 

essential to harmonize preclinical and clinical data across institutions. By merging 636 

experimental innovation with computational precision, metastasis can finally be 637 

reconstructed as a dynamic, evolving ecosystem—one whose vulnerabilities may at 638 

last be rendered visible and therapeutically actionable. 639 

 640 

  641 
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Figure legends 1333 

 1334 

Figure 1. Overview of preclinical platforms and integrative technologies to study mCRC 1335 

Patient-derived tumors and genetically engineered mouse models (GEMMs) can be used to 1336 

generate tumors, cell lines, and organoids. These materials are evaluated using transplantation-1337 

based in vivo models, including subcutaneous implantation, orthotopic models (cecum/rectum), 1338 

and intrasplenic/portal-vein injection, as well as microphysiological systems such as organ-on-1339 

chip.  Across these platforms, advanced analytical approaches—single-cell transcriptomics, 1340 

genomics, spatial transcriptomics, and computational modeling—enable integrated 1341 

characterization of metastatic progression and the tumor microenvironment. 1342 
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Table 1. Representative preclinical models for colorectal cancer metastasis 1360 

Model type Representative system Metastatic route / target Key features Ref 
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GEMMs 

ApcMin/+ No metastasis reported Classic intestinal tumor model; lacks 
invasive phenotype 

35, 205 

Villin-CreERT2; 
Apcfl/fl;KrasLSLG12D 

No distant metastasis observed Generates multiple intestinal adenomas; 
non-invasive phenotype 

124 

Cdx2-CreERT2;Apcfl/fl; 
KrasLSLG12D;Trp53fl/fl 

Invasive phenotype 
without distant metastasis 

Colon-specific genetic recombination that 
reproduces invasive adenocarcinoma with 

desmoplastic stroma 
88 

Villin-CreERT2; 
Apcfl/fl;KrasLSLG12D;Trp53fl/fl 

Liver metastasis observed 
(macroscopic) 

Highly invasive adenocarcinomas with 
confirmed liver metastases 

39 

Fabp1-Cre;Apcfl/fl; 
KrasLSLG12D;Tgfbr2fl/fl 

Liver metastases detected in 
subset (10-20%) 

TGF-signaling-loss-driven invasion and 
desmoplasia 

128 

Orthotopic 
transplantation of 

genetically 
engineered murine 

organoids 

Cdx2-CreERT2;Apcfl/fl; 
KrasLSLG12D;Trp53fl/fl-derived 

tumor organoids 

Ex vivo organoid culture and 
orthotopic colonic injection; 

No distant metastasis observed; 
localized invasive growth in colon 

wall 

Organoids derived from GEMM generate 
colon-restricted invasive adenocarcinomas 
upon orthotopic transplantation; faithfully 

mimic human CRC architecture and 
desmoplastic stroma but lack metastatic 

spread 

88 

Villin-CreERT2; 
Apcfl/fl;KrasLSLG12D;Trp53fl/R172H-

derived tumor organoids 

Orthotopic transplantation into 
cecum wall; occasional 

metastasis to liver and lung 
87, 206 

Apc-/-;KrasLSLG12D/+;Trp53-/-; 
Smad4-/- 

Orthotopic transplantation of 
genetically engineered intestinal 

or colonic organoids into 
cecum/rectum; metastasis to liver 

and lung 

Reproducible macroscopic metastases; 
recapitulates adenoma-carcinoma-

metastasis sequence 
87, 89, 207 

Apcfl/fl; KrasLSLG12D; 
Tgfbr2fl/fl;Trp53fl/fl GEMM-

derived organoids 

Orthotopic cecal or splenic 
injection of in vitro Ad-Cre–

recombined tumor organoids; 
portal dissemination to liver 

(occasional lung lesions) 

TGFb-signaling loss drives invasive 
adenocarcinoma and reproducible liver 

metastasis 
137 

Orthotopic 
transplantation of 

PDOs 

Human CRC PDOs 

Subcutaneous and orthotopic into 
cecal or rectal wall. No distant 

metastasis reported. 

Human PDOs maintain histological and 
genetic fidelity to the parental tumor; first 
demonstration of in vivo tumorigenicity of 

human CRC organoids 

208 

Orthotopic portal vein injection; 
metastasis to liver 

Human PDOs reproducibly form hepatic 
metastatic nodules following portal vein 

injection; faithfully mimic desmoplastic and 
fibroblast-rich stroma observed in clinical 

CRC liver metastases 

90 

Human CRC Primary- and 
Metastatic-derived PDOs 

Subcutaneous and orthotopic into 
cecal or rectal wall; occasional 

metastasis to liver 

Occasional liver metastases observed only 
in mice transplanted with metastatic-origin 

PDOs; none in primary PDO group. 
209 

Non-orthotopic 
transplantation of 
murine cancer cell 

lines 

CT26 (BALB/c) 

Tail vein injection; metastasis to 
lung 

Formation of lung metastases within ~2 
weeks after injection 

210 

Intrasplenic injection or 
intraportal; metastasis to liver 

Mimics hematogenous spread via portal 
circulation; widely used for hepatic 

metastasis evaluation 
34, 211 

MC38 (C57BL/6) 
Intrasplenic or intraportal vein 

injection; metastasis to liver and 
occasionally to lung 

Highly reproducible hepatic metastasis via 
portal circulation; mimics hematogenous 

spread under immunocompetent 
background. Preferred routes for MC38 

due to low orthotopic engraftment 
efficiency. 

34, 156, 171, 

211 

Non-orthotopic 
transplantation of 

KM20L2, HCT116, HCT15, 
SW480, SW620, Colo320DM SW620: 20% liver metastasis; 212 
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human CRC cell 
lines 

Orthotopic cecal injection; 
occasional metastasis to liver and 

lymph nodes 

Common nodal metastasis except for 
SW480, Colo320DM 

Co115 Tumor take rate 90%; metastasis to nodal 
and occasionally to liver 

212 

HCC2998 Tumor take rate 88%; metastasis to nodal 
and rarely to liver 

212 

HT29 Tumor take rate 69%; metastasis to nodal 
and rarely to liver 

212 

CaCo2, WiDr, Co205 Tumor take rate 40%; very low metastasis 212 

HCT116 

Orthotopic cecal submucosa 
(micropipette injection) 

Tumor take rate 75%; metastasis to 100% 
nodal, 67% liver, and 50% lung 

213 

Rectal wall (rectal injection) Tumor take rate 65%; rare metastasis 
(3.3%) 

214 

Intraportal injection 90% developed liver metastasis (the 
highest hepatic take rate) within 30 days 

215 

HT29 Intrasplenic injection (metastasis 
to liver) 

78% developed macroscopic liver 
metastasis within 6 weeks 

216 

SW620 

Intrasplenic injection (metastasis 
to liver) ~80% liver metastasis within 4-6 weeks 155 

Intraportal injection (metastasis to 
liver) 

100% liver metastasis in all injected mice 
(dose-dependent tumor load) 

38 

 1361 

GEMMs: Genetically engineered mouse models; Min: Multiple intestinal neoplasia; Cre: Cre recombinase; CreERT2: Cre 1362 

recombinase fused with estrogen receptor (ER) conditionally activated by tamoxifen (T2); fl: floxed (flanked by loxP sites, 1363 

conditionally deleted by Cre recombinase); LSL: a loxP-stop-loxP cassette conditionally removed by Cre recombinase for 1364 

subsequent expression of gene(s); PDOs: patient-derived organoids; tumor take rate (%) = number of animals developing 1365 

tumors / total number of animals inoculated/transplanted.  1366 
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