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The liver exhibits the highest recovery rate from acute injuries. However, in chronic liver disease, the long-term loss of 
hepatocytes often leads to adverse consequences such as fibrosis, cirrhosis, and liver cancer. The Wnt signaling plays 
a pivotal role in both liver regeneration and tumorigenesis. Therefore, manipulating the Wnt signaling has become an 
attractive approach to treating liver disease, including cancer. Nonetheless, given the crucial roles of Wnt signaling in 
physiological processes, blocking Wnt signaling can also cause several adverse effects. Recent studies have identified 
cancer-specific regulators of Wnt signaling, which would overcome the limitation of Wnt signaling target approaches. 
In this review, we discussed the role of Wnt signaling in liver regeneration, precancerous lesion, and liver cancer. 
Furthermore, we summarized the basic and clinical approaches of Wnt signaling blockade and proposed the therapeutic 
prospects of cancer-specific Wnt signaling blockade for liver cancer treatment. Clin Mol Hepatol 2022 Jul 4. [Epub 
ahead of print]
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INTRODUCTION

Liver regeneration has been extensively studied.1-3 In vivo 
studies have shown that partial hepatectomy or chemical in-
jury activates extracellular and intracellular signaling path-
ways, leading to liver regeneration. Hepatocyte loss during 
chronic liver diseases triggers compensatory proliferation of 

the surviving hepatocytes.4-6 Apart from liver regeneration in 
physiological conditions, genotoxic risk factors might lead 
them to convert to neoplasia. Hepatitis virus, alcohol abuse, 
non-alcoholic fatty liver disease (NAFLD), and aflatoxin-B1 
exposure are also the main etiological factors to induce the 
development of precancerous lesions in the liver. Liver cancer 
is one of the top 10 lethal cancers worldwide. Its estimated 
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death rate in 2021 is 6% in males and 4% in females.7 Liver 
cancer consists of hepatocellular carcinoma (HCC), cholan-
giocarcinoma (CCA), hepatoblastoma (HB), and several other 
rare tumors (angiosarcoma, intraductal papillary neoplasm of 
the bile duct, and mucinous cystic neoplasm). HCC is the 
most common primary liver cancer frequently developed 
with chronic liver disease, such as cirrhosis caused by hepati-
tis virus infection.8

Among various signaling pathways associated with liver bi-
ology,9-12 Wnt signaling is involved in all stages of liver disease 
progression, from liver injury to inflammation, fibrosis, cir-
rhosis, and tumorigenesis. Several Wnt ligands are secreted 
by various hepatic cells, including hepatocytes, stellate cells, 
Kupffer cells, biliary epithelial cells, and sinusoidal endothelial 
cells.13-16 Based on the oncogenic roles of Wnt signaling in 
cancer, several components and regulators of Wnt signaling 
have been proposed as the druggable targets to improve the 
current therapeutic efficacy in the liver cancer treatment.17

Herein, we review the roles of Wnt signaling in liver regen-
eration and liver tumorigenesis and the therapeutic targets 
of Wnt signaling in liver cancer treatment.

Wnt SIGNALING

Wnt signaling is evolutionarily conserved and orchestrates 
various cellular processes, including cell proliferation, differ-
entiation, migration, polarity, stemness, and lineage plastici-
ty.18,19 Consequently, Wnt signaling plays a pivotal role in or-
ganogenesis, tissue homeostasis, tissue regeneration, and 
tumorigenesis.20-25 The Wnt signaling is triggered by the 
binding of the Wnt ligands to the frizzed (FZD) receptors. The 
mammals have 19 Wnt ligands and 10 FZD receptors,26 result-
ing in the complexity and specificity in Wnt signaling activa-

tion. Based on the involvement of β-catenin, a key compo-
nent of Wnt signaling, Wnt signaling is generally classified 
into canonical (β-catenin-mediated) and non-canonical 
(β-catenin-independent) Wnt signaling (Fig. 1). In the canoni-
cal Wnt/β-catenin pathway, the protein destruction complex 
(casein kinase 1 [CK1], glycogen synthase kinase 3 [GSK3], ad-
enomatous polyposis coli [APC], and axis inhibition proteins 
[AXINs]) targets the β-catenin protein for degradation via 
CKI1 and GSK3-mediated sequential phosphorylation at the 
N-terminus (Ser-45, Thr-41, Ser-37, and Ser-33) of β-catenin 
followed by β-TrCP, an E3 ligase, recruitment. Conversely, 
binding of the canonical Wnt ligands to the FZD receptors 
and LRP5/6 co-receptors activates dishevelled (DVL), which 
inhibits the protein destruction complex. As a result, β- 
catenin protein is stabilized and translocated into the nucleus 
to transactivate the canonical Wnt target genes by replacing 
the co-repressors associated with the T-cell factor/lymphoid 
enhancer-binding factor (TCF/LEF) with the co-activators. 
Non-canonical Wnt signaling pathways include the planar 
cell polarity pathway (involved in c-Jun N-terminal kinase 
[JNK] activation, small GTPase activation, and cytoskeletal re-
arrangement), and the Wnt/Ca2+ pathway (activating phos-
pholipase C [PLC] and protein kinase C [PKC]).18,19

Wnt SIGNALING IN LIVER REGENERATION

Upon partial hepatectomy or acute liver injury, the number 
of hepatocytes is drastically reduced. Various signaling path-
ways (epidermal growth factor [EGF], hepatocyte growth 
factor [HGF], Wnt/β-catenin, and Notch) stimulate the hepa-
tocytes in the G0 phase to proliferate, compensating tissue 
loss and restoring the physiological functions of the liver.27-29 
During liver regeneration, endothelial cells under shear stress 

Abbreviations: 
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produce Wnts to activate Wnt/β-catenin signaling in hepato-
cytes. Additionally, the organ precisely senses the size of the 
regenerating liver and adjusts its size to 100%.2

Several animal models (rat, mouse, and zebrafish) were uti-
lized for liver regeneration study.30-33 The partial hepatecto-
my is the classic strategy to create the murine liver regenera-
tion model.30 Carbon tetrachloride (CCl4) is a frequently used 
chemical to induce liver injury in rats and mice.34 Meanwhile, 
several dietary-induced liver injury models are also common-
ly used.35 Biliary injury and regeneration can be induced by 
the 1,4 -dihydro- 2,4,6- trimethyl-pyridine- 3,5 -dicarboxylate 
(DDC) diet.35 Besides murine models, zebrafish emerged as a 
potent model for drug screening of liver generation.32,33 Par-

tial hepatectomy, drug-induced liver injury, and nitroreduc-
tase-mediated hepatocyte ablation were employed to estab-
lish the zebrafish liver injury model.32,33,36,37

Transient activation of the canonical Wnt signaling is indis-
pensable for liver regeneration (Fig. 2).13,15,27 In rat models, 
overexpressed Wnt1 and nuclear β-catenin are predominant-
ly accumulated in remaining parenchymal cells after 70% 
partial hepatectomy. The level of β-catenin increased within 
5 minutes after hepatectomy, accompanied by its nuclear 
translocation and subsequent target gene expression for he-
patocyte proliferation.27 Significantly, genetic ablation of 
β-catenin/Ctnnb1 impairs liver regeneration of mice from 
partial hepatectomy.38 The liver-specific Ctnnb1 knock-out 

Figure 1. Wnt signaling. Illustration of canonical and non-canonical Wnt signaling. The hallmark of the canonical Wnt/β-catenin pathway is 
the stabilization and nuclear translocation of β-catenin. In the absence of Wnt ligands, cytoplasmic β-catenin is degraded by the destruction 
complex (Axin, APC, GSK3β, and CK1α). Upon Wnt ligand binding to Frizzled receptors (FZDs) and LRP, the destruction complex is inhibited, 
β-catenin protein is stabilized in the cytosol and translocated into the nucleus. Nuclear β-catenin then recruits transcriptional coactivator 
CREBBP to transactivate target genes in conjunction with TCF/LEF transcription factors. Additionally, FZDs are ubiquitinated by ZNRF3 and 
RNF43 E3 ligases, which are inhibited by R-spondin binding to LGR5, increasing the cells’ sensitivity to Wnt ligands. In Wnt/PCP signaling, Wnt 
ligands bind to FZDs or their co-receptors (ROR and RYK) to trigger a cascade reaction, involving the small GTPases RhoA and Ras-related C3 
botulinum toxin substrate (Rac), then activating Rho-associated protein kinases (ROCKs) and JUN N-terminal kinases (JNK), respectively. These 
lead to cytoskeletal rearrangements and/or transcriptional responses such as ATF2. In Wnt/Ca2+ signaling, the activation of phospholipase C 
(PLC) triggers the release of Ca2+ from the endoplasmic reticulum (ER), which promotes the transcription of nuclear factor of activated T cells 
(NFAT) through several intermediate steps. Created with BioRender.com. LRP, lipoprotein receptor-related protein; LGR5, leucine-containing 
repeat G-protein-coupled receptor 5; RNF43, ring finger protein 43; ZNRF3, zinc and ring finger 3; GSK-3β, glycogen synthase kinase 3β; CK1α, 
casein kinase 1α; APC, adenomatous polyposis coli; CBP, CREB binding protein; TCF/LEF, T-cell factor/lymphoid enhancer-binding factor; ROR, 
receptor tyrosine kinase-like orphan receptor; RYK, receptor tyrosine kinase; ARF2, activating transcription factor 2; PIP2, phosphatidylinositol 
4,5-biphosphate; DAG, diacylglycerol; PKC, protein kinase C.
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(KO) delayed DNA synthesis and hepatocyte proliferation in 
mice after partial hepatectomy. Conversely, activation of 
Wnt/β-catenin signaling accelerates liver regeneration in the 
zebrafish model.39 It was also shown that liver damage up-
regulated leucine-containing repeat G-protein-coupled re-
ceptor 5 (LGR5) and AXIN2 in the hepatocytes.40 LGR5 is a 
marker of actively dividing stem and progenitor cells in Wnt-
driven self-renewing tissues.41 LGR5 interacts with FZD and li-
poprotein receptor-related protein 6 (LRP6) to enhance phos-
phorylation of LRP6, which in turn enhances the Wnt/
β-catenin signaling.42 While Lgr5 is not expressed in healthy 
adult livers, after liver damage, Lgr5+ cells appear near the 
bile ducts, consistent with strong activation of the Wnt sig-
naling.41 AXIN2 is another Wnt downstream target gene 
transactivated by β-catenin.43 Like AXIN1, AXIN2 combined 
with other destruction complex components degrades 
β-catenin, serving as a negative feedback regulator of the 
Wnt signaling.44

Other than core components of Wnt signaling, additional 
regulators of Wnt signaling were implicated in liver regenera-
tion. Recently, our group identified the transmembrane pro-
tein 9 (TMEM9) gene as an amplifier of Wnt/β-catenin signal-
ing. TMEM9 is a type I transmembrane protein primarily 
localized in lysosomes and multivesicular bodies (MVBs). 
While the ablation of TMEM9 inhibits the activity of the Wnt/
β-catenin signaling, β-catenin transactivates TMEM9, leading 
to hyperactivation of Wnt/β-catenin signaling.45 Interestingly, 
TMEM9 is highly expressed in hepatocytes around the central 

vein (CV) of regenerating liver.46 TMEM9 hyperactivates Wnt/
β-catenin signaling to promote liver regeneration through 
lysosomal degradation of APC protein.46 Tmem9 KO impairs 
CCl4-induced liver regeneration with downregulation of 
Wnt/β-catenin signaling.46

In addition to the role of Wnt/β-catenin signaling in regen-
eration, sustained activation of the Wnt signaling is associat-
ed with the progression of chronic liver diseases and liver tu-
morigenesis (Fig. 2). Additionally, reactive oxygen species 
(ROS) and lipid peroxide are the risk factors for the develop-
ment of the precancerous lesion in the liver.47,48 However, the 
crosstalk between Wnt signaling and ROS has not been fully 
revealed in the liver. It was reported that β-catenin can be 
further stabilized by ROS.49 Meanwhile, lipid peroxidation 
products mainly generated by ROS activate the canonical 
Wnt pathway through oxidative stress.50 Therefore, it is likely 
the potential crosstalk between Wnt signaling and ROS 
might contribute to liver cancer development.

Accumulating evidence suggests that many chronic liver 
diseases contribute to liver cancer development, described 
below. 

Figure 2. Wnt signaling in liver regeneration. In normal liver, most hepatocytes are polyploid with random chromosomal deletions. Upon liver 
injury, the increased narrow portal vein pressure stimulates the initiating signals for liver regeneration. The activation of Wnt signaling is cru-
cial in liver regeneration. Moreover, in chronic liver injury, the ROS and lipid peroxide are the risk factors damaging the reproducing hepato-
cytes, leading to precancerous lesion development. Created with BioRender.com. ROS, reactive oxygen species.
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Wnt SIGNALING IN PRECANCEROUS LIVER 
LESION

Hepatitis virus

Globally distributed hepatitis B virus (HBV) and hepatitis C 
virus (HCV) are the crucial triggers of HCC initiation. Both HBV 
and HCV can induce chronic infections and are essential 
pathogenic factors in cirrhosis and liver cancer (Fig. 3).51,52 
The epidemiological data show that more than 70% of pa-
tients with liver cancer have HBV infection, 10–20% have HCV 
infection, and a significant proportion of patients have both 
HBV and HCV infection.53-55

After infection, the DNA of HBV is integrated into the host 
genome, inducing genomic instability and transactivation of 
cancer-related genes, which culminates in the formation of 
early cancer cell clones. Mechanistically, HBV contributes to 
HCC development through direct and indirect means.56 Di-
rect mechanisms include virus mutations, HBV DNA integra-
tion, growth regulatory genes activation by HBV-encoded 
proteins.57 Indirect mechanisms include the activation of cel-
lular oncogenes associated with HBV DNA integration, ge-
netic instability induced by viral integration or the regulatory 
protein HBx, and the development of liver disease mediated 
by immune enhancement due to viral proteins.58

Both hepatitis B virus surface antigen (HBsAg) and HBx 
modulate the expressions of genes involved in Wnt signaling 
activation. HBsAg activates the transcription factor LEF1 of 
the Wnt signaling.59 The X protein encoded by the hepatitis B 
virus has a vital role in stimulating viral gene expression and 

replication, critical for maintaining chronic carrier status. HBx, 
a 17 kDa multifunctional protein, upregulates the expression 
of Wnt ligands (WNT1 and WNT3), the receptor (FZD2 and 
FZD7), a component of the destruction complex (GSK3β), E-
cadherin, and Wnt1-inducible-signaling pathway protein 1 
(WISP1), a suppressor of Wnt antagonists (secreted frizzled-
related protein 1 [SFRP1] and SFRP5). On the other hand, the 
Wnt signaling key components (β-catenin and AXIN1) are 
highly mutated in HBV-associated HCC. Loss-of-function 
(LOF) mutations of the AXIN1 are observed in HBV-HCC pa-
tients. In HBV and/or HCV-associated HCC patients, the most 
frequent mutation in the CTNNB1 gene is enriched in the 
exon 3 encoding the N-terminal phosphorylation sites.60-62 
These aberrantly controlled genes in Wnt signaling subse-
quently promote and lead to the development of HCC.63-65

The oncogenic mechanism of HCV in liver cancer is mainly 
mediated by Wnt/β-catenin signaling hyperactivation via the 
core protein and two nonstructural proteins, NS3 and NS5A.66 
The core protein (HCV core antigen) is a significant compo-
nent of HCV. It regulates hepatocyte transcription and pro-
motes Wnt/β-catenin signaling by upregulating Wnt ligands 
(WNT1 and WNT3A), FZD receptors, and LRP5/6.67,68 Addition-
ally, at the early stage of HCV infection, the secreted Wnt an-
tagonists, SFRP2 and Dickkopf 1 (DKK1), are downregulated 
by their promoter hypermethylation.69,70 HCV core protein 
also promotes hypermethylation of the CDH1 gene promoter 
region,71 destabilizing the cadherin-catenin-actin complex 
for β-catenin release and activation.72 NS5A stabilizes 
β-catenin via activating phosphoinositide 3-kinase (PI3K)/
AKT, leading to GSK3β inactivation followed by inhibiting the 

Figure 3. Wnt signaling in liver cancer. Dynamic activation of β-catenin and Wnt signaling-related gene mutations from risk factor exposure 
to final liver cancer. With the precancerous lesions induced by hepatitis virus, NAFLD, alcohol assumption, or aflatoxin-B1, genetic and epigen-
etic alteration (e.g., mutations in the CTNNB1 or AXIN1 genes) lead to the accumulation and nuclear translocation of β-catenin, resulting in ini-
tiating liver cancer development. Created with BioRender.com. NAFLD, non-alcoholic fatty liver disease.
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protein-destruction complex-mediated β-catenin degrada-
tion for Wnt target gene activation. At the early stage of viral 
infection, HCV-activated Wnt/β-catenin signaling also pro-
motes liver fibrosis by enhancing the activation and survival 
of hepatic stellate cells.17,73,74

Alcohol abuse

Alcohol is a well-known risk factor for liver cancer. Alcoholic 
liver disease (ALD) is a chronic liver disease caused by long-
term alcohol consumption (Fig. 3). ALD is characterized by 
the fatty liver at the beginning, then progressed to alcoholic 
hepatitis, liver fibrosis, and cirrhosis, which is pathologically 
associated with the precancerous lesions of HCC. In vivo, eth-
anol (EtOH) is metabolized into the reactive metabolite acet-
aldehyde, promoting liver tumorigenesis. Mice administered 
with the chemical carcinogen, diethylnitrosamine (DEN), for 
7 weeks and the subsequent EtOH feeding for 16 weeks ex-
hibited the increased total number of cancer foci and liver tu-
mors.75 Also, these tumors showed a 3- to 4-fold increase in 
the expression of proliferation markers and an increased ex-
pression of β-catenin, compared to non-tumor hepato-
cytes.75 In a rat model of chronic liver disease, EtOH-treated 
liver was accompanied by the increased proliferation of he-
patocytes, depletion of retinol and retinoic acid storage, aug-
mented expression of phospho-GSK3β at the cell membrane, 
significant upregulation of soluble Wnt ligands (Wnt2 and 
Wnt7a), accumulation of nuclear β-catenin, and upregulation 
of β-catenin target genes (cyclin D1/CCND1, c-Myc/MYC, 
WISP1, and matrix metallopeptidase [MMP7]). These data 
suggest that long-term EtOH consumption activates the 
Wnt/β-catenin signaling and increases hepatocyte prolifera-
tion, promoting liver tumorigenesis.75 Additionally, ROS accu-
mulation, nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-ĸB)-dependent vascular endothelial growth 
factor (VEGF) and monocyte chemoattractant protein (MCP)-
1 upregulation, and activation of extracellular signal-regulat-
ed kinase (ERK)-mitogen-activated protein kinase (MAPK) 
signaling also contribute to EtOH-induced liver tumorigene-
sis.76-80

NAFLD

The increasing prevalence of NAFLD was caused by an 
over-nourished lifestyle.81,82 NAFLD is characterized by fat ac-

cumulation in the liver, evolving to end-stage liver diseases 
such as cirrhosis and HCC (Fig. 3).83 The main risk factors of 
NAFLD include central obesity, overnutrition, insulin resis-
tance, and metabolic syndrome.84 In severe NAFLD, many tis-
sue repair-related genes (TMEM204, FGFR2, matrix mole-
cules, and matrix remodeling factors) were hypomethylated 
at their promoters and overexpressed. Conversely, genes in 
specific metabolic pathways (lipid metabolism, cytochrome 
P450 family, multidrug resistance, and fatty acid anabolic 
pathways) were hypermethylated and silenced.85 Hyperinsu-
linemia is one of the risk factors of NAFLD.86 SOX17 plays a vi-
tal role in regulating insulin secretion. Sox17 KO mice display 
high susceptibility to high-fat diet-induced hyperglycemia 
and diabetes.87 SOX17 directly interacts with the TCF/LEF 
transcription factor to repress the transcription of Wnt signal-
ing target genes. The methylation of the SOX17 promoter is a 
frequent event in human cancers. Epigenetic silencing of 
SOX17 contributes to the aberrant activation of Wnt/β-catenin 
signaling,88 accelerating progression from NAFLD to HCC. Be-
sides, β-catenin inhibits the expression of CCAAT enhancer-
binding protein α (CEBPA) and peroxisome proliferator-activat-
ed receptor γ (PPARG), which in turn inhibits the preadipocyte 
differentiation.89 As the co-receptor of the Wnt/β-catenin sig-
naling, LRP6 induces lipid accumulation in the liver via insu-
lin-like growth factor 1 (IGF1)/AKT/mammalian target of ra-
pamycin (mTOR)/sterol regulatory element binding transcription  
factor (SREBF) 1/2 signaling. Intriguingly, inhibiting the non-
canonical Wnt signaling reduces lipid accumulation and in-
flammation.90 Therefore, while reducing the effects of NAFLD 
risk factors, inhibition of the Wnt signaling is also essential for 
attenuating the development of NAFLD and preventing the 
initiation of HCC.

Aflatoxin-B1 exposure

Among the aflatoxins, aflatoxin type B1 (AFB1) primarily 
targets the liver as a highly potent hepatotoxin and hepato-
carcinogen (Fig. 3). AFB1 impairs DNA repair processes, re-
sulting in severe DNA mutagenesis, and also inhibits DNA 
and RNA metabolism. This pathological event ultimately 
leads to excessive liver lipid accumulation, liver enlargement, 
bile duct epithelial hyperplasia, and liver cancer. The potency 
of aflatoxin to cause liver cancer is significantly enhanced in 
the presence of HBV infection. Under chronic HBV infection, 
cytochrome P450s could metabolize inactive AFB1 to muta-
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genic AFB1-8,9-epoxide. Also, the infection leads to hepato-
cyte necrosis and regeneration, producing oxygen and nitro-
gen reactive species and increasing the incidence of AFB1-
induced mutagenesis.91 Clinical studies have shown that 
CTNNB1 mutations are present in approximately one-quarter 
of HCC in areas with low aflatoxin B1 exposure. Interestingly, 
these CTNNB1 mutations were similar to those previously re-
ported in the human HCC.92

Wnt SIGNALING IN LIVER CANCER

HCC

HCC is a common and fatal malignancy worldwide.93 Re-
gardless of the risk factors mentioned above, aberrant hyper-
activation of Wnt/β-catenin signaling is observed in 95% of 
HCCs.94 The most common genetic mutations of the Wnt sig-
naling in HCC are the gain-of-function mutations in the CTN-
NB1 gene encoding β-catenin,61,95 which is somewhat distinct 
from colorectal cancer where Wnt/β-catenin signaling hyper-
activation is mainly driven by the APC gene inactivation.96 
Missense mutations of CTNNB1 exon 3 were observed in 
18.1% of HCC cases. Missense mutations at codons 32, 33, 38, 
or 45 of the CTNNB1 gene lead to the unphosphorylation of 
the N-terminus of β-catenin for its stabilization, nuclear 
translocation, and target gene transactivation.60 Secondly, 
the LOF mutations in the AXIN1 gene were observed in 
5–19% of HCC cases.97 CTNNB1 and AXIN1 mutations occur in 
patients with advanced HCC (Fig. 3).98-100 Importantly, hyper-
activation of the Wnt signaling is considered a hallmark of 
advanced HCC.101 It should also be noted that mutations in 
the CTNNB1 and AXIN1 genes lead to different HCC subtypes 
accompanied by distinct clinical and pathological features. 
CTNNB1 mutations are associated with less aggressive HCC, 
including chromosomally stable and highly differentiated tu-
mors,102 with a better prognosis.95 In contrast, AXIN1 muta-
tions occur more frequently in more aggressive HCC tumors 
characterized by hypodifferentiated tumor cells and chroma-
tin instability.102 Consistently, the HCC tumors with CTNNB1 
mutations or AXIN1 mutations showed different target gene 
expression.61,95,103

CCA

CCA is ranked as the second most common hepatobiliary 
cancer after HCC. CCA originates mainly from differentiated 
bile duct epithelial cells.104 CCA is often diagnosed at an ad-
vanced stage with a poor prognosis. Current chemotherapy 
has not improved the survival rate of unresectable CCA pa-
tients. Clinical and preclinical studies have shown that activa-
tion of the Wnt/β-catenin signaling occurs throughout the 
initiation and progression of CCA. Wnt ligands (WNT2, 
WNT7b, and WNT10A) and TCF4 are upregulated in CCA, ac-
companied by nuclear translocation of β-catenin.105,106 The 
progression of epithelial-mesenchymal transition (EMT) was 
observed in CCA, represented by the disrupted epithelial cell-
cell junctions and mesenchymal characteristics.107-109 Wnt/
β-catenin signaling is one of the critical pathways promoting 
the EMT transition.110,111 In CCA cells, suppression of Wnt/
β-catenin signaling increased E-cadherin and downregulated 
vimentin,112,113 suggesting that the Wnt/β-catenin signaling is 
associated with EMT during CCA tumorigenesis. β-catenin in-
teracts with E-cadherin to form the cadherin-catenin-actin 
complex, maintaining epithelial cell adhesion, cytoskeleton, 
and integrity. During CCA development, the decreased E-
cadherin releases β-catenin, resulting in β-catenin accumula-
tion and nuclear translocation.111 Then, β-catenin activates 
the transcription of twist, snails, and ZEB1 to induce the EMT 
process in CCA cells.111

HB

HB is a rare malignant tumor found in infants and chil-
dren.114 The preclinical and clinical studies showed the hyper-
activation of Wnt/β-catenin signaling in HB. In HB cases, 
β-catenin was found to be increased in the cytoplasm and 
nucleus of the tumor cells.115,116 While CTNNB1 mutations are 
limited in the exon 3 in embryonal HB, the CTNNB1 mutations 
in fetal HB encompass exon 3 and 4.117 Meanwhile, missense, 
deletion, or insertion mutations in the AXIN1 gene were de-
tected in 8% of HB cases.118
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MANIPULATING Wnt SIGNALING

Porcupine (PORCN) 

PORCN is a membranous protein mainly localized in the 
endoplasmic reticulum. PORCN mediates the palmitoylation 
of Wnt ligands, an essential process for Wnt ligands secretion 
and ligand-frizzled receptor binding.119-121 Genetic and phar-
macological blockade of PORCN reduces palmitoylation and 
inhibits the secretion of Wnt ligands, suppressing Wnt signal-
ing.122 The clinical trials showed promising results of PORCN 

inhibitors in HCC treatment. ETC159, CGX1321, and RXC004 
have entered phase I clinical trials, and IWP12 is still in the 
preclinical studies (Fig. 4).123 In mouse models, Porcn KO in-
duces embryonic lethality.124,125 Porcn inhibition could cause 
adverse effects on bone homeostasis.126

Wnt ligands

In physiological conditions, Wnt signaling is activated by 
binding of secreted Wnt ligands to LRP5/6 coreceptors and 
FZD receptors.127 Thus, targeting Wnt ligands by chemicals or 

Figure 4. Manipulating Wnt signaling. Illustration of components and processes of Wnt signal transduction as druggable targets for liver can-
cer treatment. See the text for detail. Created with BioRender.com. GPC3, glypican-3; LRP, lipoprotein receptor-related protein; FZD, frizzed; 
DKK1, Dickkopf 1; ROR, receptor tyrosine kinase-like orphan receptor; RYK, receptor tyrosine kinase; PORCN, porcupine; ER, endoplasmic retic-
ulum; GSK-3β, glycogen synthase kinase 3β; CK1α, casein kinase 1α; APC, adenomatous polyposis coli; TCF, T-cell factor; CBP, CREB binding pro-
tein; LEF, lymphoid enhancer-binding factor; peg-IFN, pegylated-Interferon-α2a; RanBP3, Ran-binding protein 3.
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neutralizing antibodies efficiently inhibits Wnt signaling. 
Based on the high expression of WNT1 in human HCC cell 
lines and tissues. Anti-WNT1 neutralizing antibody showed 
its growth inhibitory effect on HCC cell lines but not on nor-
mal hepatocytes, with reduced β-catenin’s transcriptional 
activity (Fig. 4).128 

Wnt antagonists

SFRPs, WIFs, and DKKs are the secreted Wnt signaling an-
tagonists.129,130 SFRP-1 and Wnt inhibitory factor 1 (WIF1) in-
hibit Wnt signaling by directly binding to Wnt ligands.131 The 
fusion proteins WIF1-Fc and SFRP1-Fc were constructed by 
adding the Fc fragment of human immunoglobulin (Ig) G1 to 
WIF1 and SFRP1, respectively (Fig. 4).132 The fusion proteins 
exert potent anti-tumor activity by downregulating E2F tran-
scription factor 1 (E2F1), cyclin D1, and c-Myc, increasing 
apoptosis of HCC cells and impairing tumor vascularization. 
DKK1 was initially considered a β-catenin-dependent tumor 
suppressor.130,133 Several studies have shown that DKK1 pro-
motes tumor cell proliferation, which may be due to DKK1-in-
duced endocytosis of LRP and subsequent activation of the 
Wnt/PCP signaling pathway.134,135 DKN-01 is a humanized 
monoclonal antibody targeting DKK1 in phase I/II clinical trial 
for HCC (Fig. 4). Phase I investigated the safety of DKN-01 as a 
single agent and in combination with sorafenib to treat HCC. 
Phase II explores the anti-tumor activity and safety of DKN-
01 in patients with advanced HCC.

FZD receptors

The FZD receptors are promising therapeutic targets for 
HCC. The anti-FZD antibody can effectively reduce the HCC 
tumor growth by blocking the activation of FZD receptors on 
the Wnt signaling.136 FZD decoy receptor OMP-54F28 (ipafric-
ept) is a recombinant fusion protein that binds to a human 
IgG1 Fc fragment of FZD8,137,138 which acts synergistically with 
chemotherapeutic agents (Fig. 4).139 A phase 1b dose-escala-
tion clinical trial evaluated the safety, tolerability, and phar-
macokinetics of OMP-54F28 when combined with sorafenib. 
Secreted FZD7 (sFZD7) is the extracellular domain of FZD7, 
expressed and purified from Escherichia coli. sFZD7 binding 
to WNT3 decreased the transcriptional activity of β-catenin/
TCF4 and inhibited the growth of HepG2, Hep40, and Huh7.140 
In combination with doxorubicin, sFZD7 inhibited the expres-

sion of c-Myc/MYC, Cyclin D1/CCND1, and Survivin/BIRC5, re-
duced the phosphorylation levels of AKT and ERK1/2, inhibit-
ed the growth of Huh7 xenograft tumors, and acted as a 
chemosensitizer.140 OMP-54F28 is entering phase I clinical tri-
als, while sFZD7 remains in preclinical studies (Fig. 4).

FZD antibody OMP-18R5 (vantictumab) is a monoclonal an-
tibody directly binding to FZD receptors, which blocks the 
binding of Wnt ligands to FZD 1, 2, 5, 7, and 8,141 which inhib-
its β-catenin-mediated transactivation (Fig. 4). In patient-de-
rived xenograft models, OMP-18R5 combined with chemo-
therapeutic agents synergistically inhibited the development 
of several cancers.141,142 However, like PORCN inhibitors, OMP-
18R5 has the same risk of impairing bone homeostasis.143 In a 
dose-escalation clinical trial of OMP-18R5, one patient devel-
oped bone degeneration, controllable with zoledronic acid. 
The skeletal toxicity appeared to be manageable and revers-
ible.144

LRP co-receptors

Salinomycin (SAL), isolated from Streptomyces albus, is a 
monocarboxylic polyether ionophore antibiotic.145,146 SAL 
blocks Wnt-induced LRP phosphorylation and leads to LRP 
protein degradation, destabilizing the Wnt/FZD/LRP complex 
and inhibiting the Wnt/β-catenin signaling (Fig. 4).147 SAL ef-
fectively inhibits β-catenin expression in HepG2/C3a cell 
line.148 SAL also inhibits the migration and invasiveness of liv-
er cancer stem cells through the Wnt/β-catenin signaling 
suppression.149

Tankyrase (TNKS)

TNKS mediates PARsylation and subsequent degradation 
of AXIN via the ubiquitin-proteasome pathway, which in turn 
disrupts the β-catenin destruction complex.150 Subsequently, 
the released β-catenin enters the nucleus to transactivate 
Wnt target genes.151,152 TNKS is overexpressed in many can-
cers, including HCC, gastric cancer, and colorectal cancer.153-155 
The TNKS inhibitors XAV939, WXL-8, and NVP-TNKS656, at-
tenuated Wnt/β-catenin signaling and inhibited the growth 
of HCC cells (Fig. 4).155-157 Moreover, TNKS inhibitors also sup-
pressed HCC metastasis and invasion.157 However, there are 
no relevant clinical trials for TNKS inhibitors in HCC.
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Nuclear export of β-catenin

As shown in Table 1 and Supplementary Table 1, pegylated- 
Interferon-α2a (peg-IFN), the first-line therapy for the HCV-
infected,158 attenuates the recurrence of HCC (Fig. 4).159 Mech-
anistically, peg-IFN upregulates the expression of Ran-bind-
ing protein 3 (RanBP3),160 which enhances the nuclear export 
of β-catenin.160 Thus, it is likely that peg-IFN-induced β-catenin  
nuclear export is a mechanism delaying HCC and improving 

survival in HCV patients.

β-catenin-mediated gene transactivation

The small molecule ICG-001 inhibits the interaction be-
tween β-catenin and CREB binding protein (CREBBP/CBP) for 
suppression of β-catenin-mediated gene transactivation (Fig. 
4).161 A phase Ib/IIa clinical trial of the ICG-001 derivative, PRI-
724, targeting HCC has been terminated.162 Similar to ICG-

Table 1. Targeting Wnt signaling in liver cancers

Agent Target Phase Trial identifier Type

DKN-01 DKK1 Phase I/II NCT03645980 Protein

OMP-18R5 FZD1, 2, 5, 7, and 8 Phase I NCT01345201 Protein

sFZD7 FZD7 Preclinical NA Protein

RHPDs FZD7 Preclinical NA Protein

OMP-54F28 FZD8 Phase I NCT02069145 Protein

Salinomycin LRP5/6 Preclinical NA Natural compounds

CGX1321 PORCN Phase I NCT03507998 Small molecule inhibitors

IWP12 PORCN Preclinical NA Small molecule inhibitors

ETC-159 PORCN Phase I NCT02521844 Small molecule inhibitors

RXC004 PORCN Phase I NCT03447470 Small molecule inhibitors

NVP-TNKS656 Tankyrase Preclinical NA Small molecule inhibitors

XAV939/WXL-8 Tankyrase Preclinical NA Small molecule inhibitors

CGP049090 TCF/β-catenin Preclinical NA Natural compounds

PKF118-310 TCF/β-catenin Preclinical NA Natural compounds

PKF115-584 TCF/β-catenin Preclinical NA Natural compounds

FH535 TCF/β-catenin Preclinical NA Small molecule inhibitors

Peg-IFN TCF/β-catenin Phase II NCT00610389 Protein

WIF1-Fc and sFRP-Fc Wnt ligands Preclinical NA Protein

Anti-Wnt1 Wnt1 Preclinical NA Protein

CGK062 β-catenin phosphorylation Preclinical NA Small molecule inhibitors

PMED-1 β-catenin/CBP Preclinical NA Small molecule inhibitors

PRI-724 β-catenin/CBP Phase I/II NCT01302405 Small molecule inhibitors

Hydroxychloroquine v-ATPase Phase II NCT03037437 Small molecule inhibitors

Chloroquine v-ATPase Preclinical NA Small molecule inhibitors

Bafilomycin v-ATPase Preclinical NA Small molecule inhibitors

Concanamycin v-ATPase Preclinical NA Small molecule inhibitors

CAR-GPC3 T cell GPC3 Phase I NCT02932956 Cells

Anti-GPC3 antibody GPC3 Phase II NCT01507168 Protein

CIK with anti-GPC3 GPC3 Phase II NCT03146637 Cells

DKK1, Dickkopf 1; FZD, frizzed; NA, not available; PORCN, porcupine; TCF, T-cell factor; peg-IFN, pegylated-Interferon-α2a; CBP, CREB 
binding protein; v-ATPase, vacuolar-type ATPase.
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001, PMED-1 disrupts β-catenin-CREBBP interaction and sup-
presses β-catenin target gene activation.163 PMED-1 inhibits 
HCC cell proliferation but not normal human hepatocytes.163

PKF118-310, PKF115-584, and CGP049090 are small-mole-
cule inhibitors targeting the β-catenin-TCF complex (Fig. 4).164 
These antagonists displayed the dose-dependent cytotoxici-
ty in HepG2, Hep40, and Huh7 cell lines, with reduced cyto-
toxicity (10%) to normal hepatocytes. PKF118-310, PKF115-
584, and CGP049090 downregulated β-catenin target genes 
(MYC, CCND1, and Survivin/BIRC5) and inhibited the growth of 
HepG2 xenografts.164,165 Similar to the mechanism of PKF118-
310, PKF115-584, and CGP049090, FH535 inhibits β-catenin-
mediated gene transactivation by interrupting the recruit-
ment of nuclear receptor coactivator 2 (NCOA2)/GRIP1 to the 
β-catenin transcriptional complex.166 It was shown that FH535 
inhibits HCC cell proliferation by reducing cancer cell stem-
ness.165

β-catenin phosphorylation

CGK062 promotes PKCα-mediated phosphorylation of 
β-catenin at Ser33/Ser37, which degrades β-catenin by the 
proteasome (Fig. 4).167 Consistently, CGK062 inhibited the ex-
pression of β-catenin target genes (CCND1, MYC, and AXIN2) 
and suppressed the growth of Wnt/β-catenin-activated HCC 
cells.167

Cancer-specific targeting of Wnt signaling

Given the pivotal role of Wnt signaling in the homeostasis 
and regeneration of multiple organs,168-170 broad-spectrum 
Wnt signaling inhibitors cause detrimental effects on the 
normal cells and organs. Therefore, cancer-specific Wnt sig-
naling regulators may be attractive for Wnt signaling block-
ade therapy. TMEM9, an amplifier of Wnt/β-catenin signaling, 
promotes lysosomal protein degradation via v-ATPase, result-
ing in APC downregulation.46 TMEM9 is highly expressed in 
liver regeneration and HCC. Genetic ablation of TMEM9 inhib-
its HCC tumorigenesis with downregulation of Wnt/β-catenin 
signaling.46 Similarly, v-ATPase inhibitors, bafilomycin and con-
canamycin,171,172 also inhibit Wnt/β-catenin signaling without 
toxicity to normal cells and animals (Fig. 4, Table 1).45,46 Thus, 
molecular targeting of the TMEM9-v-ATPase axis can be used 
as cancer-specific Wnt/β-catenin blockade.

Glypican-3 (GPC3) is a proteoglycan binding to the FZD re-

ceptor and stimulates Wnt ligands-FZD interaction, resulting 
in the Wnt signaling activation (Fig. 4).173 GPC-3 is specifically 
expressed in HCC but not in normal human liver tissue.174 The 
ectopic expression of GPC3 promotes the proliferation of 
HCC cells.175 HS20 (an anti-GPC3 monoclonal antibody) sup-
presses Wnt/β-catenin signaling via inhibiting the interaction 
of Wnt3a with the GPC3.176 In xenograft mouse models, HS20 
inhibited HCC progression without apparent concomitant 
toxicity.176 To date, including CAR-GPC3 T cells or anti-GPC3 
antibodies, 33 clinical trials related to GPC3 for HCC treat-
ment were registered (https://clinicaltrials.gov/) (Table 1, 
Supplementary Table 1). 

Concluding remarks

Wnt signaling activation plays a pivotal role in liver regen-
eration, metabolic zonation, liver diseases, and liver cancer. 
Aberrantly hyperactivated Wnt signaling promotes liver tu-
morigenesis and progression, often in conjunction with liver 
diseases. Although direct targeting of Wnt signaling sounds 
attractive as cancer therapy, given the crucial roles of Wnt 
signaling in tissue homeostasis and regeneration, severe ad-
verse effects from Wnt blockade are inevitable. Nonetheless, 
an in-depth understanding of the biology of Wnt signaling in 
liver cancer and exploring cancer-specific Wnt signaling reg-
ulators are expected to identify molecular targets specific to 
liver cancer, which may overcome the current limitations of 
Wnt signaling inhibitors, and further improve therapeutic 
strategies of liver cancer treatment.
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Supplementary Table 1. Additional clinical trials related with peg-IFN, hydroxychloroquine and CAR-GPC3 T cell in liver cancers

Agent Target Phase Trial identifier Type

Peg-IFN TCF/β-catenin Phase II NCT00610389 Protein

Peg-IFN TCF/β-catenin Phase III NCT01821963 Protein

Hydroxychloroquine v-ATPase Phase II NCT03037437 Small molecule inhibitors

Hydroxychloroquine v-ATPase Phase I/II NCT02013778 Small molecule inhibitors

Hydroxychloroquine v-ATPase Phase I NCT04873895 Small molecule inhibitors

CAR-GPC3 T cell GPC3 Phase I NCT02932956 Cells

CAR-GPC3 T cell GPC3 Phase I NCT04093648 Cells

CAR-GPC3 T cell GPC3 Phase I NCT05003895 Cells

CAR-GPC3 T cell GPC3 Phase I/II NCT04864054 Cells

CAR-GPC3 T cell GPC3 Phase I NCT04951141 Cells

CAR-GPC3 T cell GPC3 Phase I NCT04842812 Cells

CAR-GPC3 T cell GPC3 Phase I NCT04377932 Cells

CAR-GPC3 T cell GPC3 Phase I NCT04715191 Cells

CAR-GPC3 T cell GPC3 Phase I NCT05103631 Cells

CAR-GPC3 T cell GPC3 Phase I/II NCT02715362 Cells

CAR-GPC3 T cell GPC3 NA NCT03146234 Cells

CAR-GPC3 T cell GPC3 Phase I NCT03198546 Cells

CAR-GPC3 T cell GPC3 Phase I/II NCT03130712 Cells

CAR-GPC3 T cell GPC3 NA NCT05047510 Cells

CAR-GPC3 T cell GPC3 Phase I NCT04506983 Cells

CAR-GPC3 T cell GPC3 Phase I/II NCT05120271 Cells

CAR-GPC3 T cell GPC3 Phase I NCT03884751 Cells

CAR-GPC3 T cell GPC3 Phase I NCT02395250 Cells

CAR-GPC3 T cell GPC3 Phase I NCT03980288 Cells

CAR-GPC3 T cell GPC3 Phase I/II NCT02723942 Cells

CAR-GPC3 T cell GPC3 Phase I/II NCT03084380 Cells

CAR-GPC3 T cell GPC3 Phase I NCT02905188 Cells

CAR-GPC3 T cell GPC3 Phase I NCT04121273 Cells

CAR-GPC3 T cell GPC3 Phase I NCT05070156 Cells

CAR-GPC3 T cell GPC3 NA NCT03302403 Cells

CAR-GPC3 T cell GPC3 Phase I NCT04756648 Cells

CAR-GPC3 T cell GPC3 Phase I NCT04973098 Cells

CAR-GPC3 T cell GPC3 Phase I/II NCT02959151 Cells

CAR-GPC3 T cell GPC3 Phase I NCT05155189 Cells

peg-IFN, pegylated-Interferon-α2a; CRA-GPC3, glypican-3; TCF, T-cell factor; v-ATPase, vacuolar-type ATPase; GPC3, glypican-3; NA, not 
available.


