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Abstract 
 
Actin is a highly conserved protein in mammals. The actin dynamics is regulated by actin-binding 
proteins and actin-related proteins. Nuclear actin and these regulatory proteins participate in 
multiple nuclear processes, including chromosome architecture organization, chromatin 
remodeling, transcription machinery regulation, and DNA repair. It is well known that the 
dysfunctions of these processes contribute to the development of cancer. Moreover, emerging 
evidence has shown that the deregulated actin dynamics is also related to cancer. This chapter 
discusses how the deregulation of nuclear actin dynamics contributes to tumorigenesis via such 
various nuclear events. 
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1. Introduction 
 
Actin is a highly conserved protein family in mammals. It participates in multiple cellular processes, 
including muscle contraction, cell motility, cell division, organelle movement, material 
transportation, signal transduction, cell junction establishment, and cell shape maintenance [1-3]. 
The actin family is classified into three types of isoforms in humans: α-actins (ACTA1, ACTA2, 
and ACTC1), β-actins (ACTB and ACTBL2), and γ-actins (ATCG1 and ACTG2) (Table 1) [2]. 
They share 93% amino acid identity, with slight length variations at N-terminus [2, 4]. 
 

1.1. Actin dynamics in the cytoplasm 
In the cytoplasm, actin exists as either a globular monomer (G-actin) or a filamentous polymer (F-
actin) [1]. The G-actin structure is divided into two lobes by a deep cleft in the middle (Figure 1A). 
The upper cleft between subdomains 2 and 4 is the binding site for ATP, ADP, and cations. The 
lower cleft between subdomains 1 and 3 is the target site for actin-binding proteins (ABPs) [1, 4]. 
F-actin is a linear chain of G-actins [1]. It is the basic building structure of microfilaments with two 
ends, the (+) end (barbed end) and the (−) end (pointed end). 

In a physiological condition, G-actin and F-actin are under a dynamical equilibrium 
between polymerization and depolymerization (Figure 1B) [5]. At the initial polymerization phase, 
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ATP-bound G-actins combine into an oligomer as a nucleus with actin-nucleating proteins, like 
formin and actin-related protein 2/3 (ARP2/3) complex (Table 2), under the existence of Mg2+, K+, 
or Na+. Then, the nucleus of actin polymerization rapidly increases in length at both ends. This 
elongation phase is powered by the hydrolysis of ATP-G-actin, which transforms to ADP-G-actin 
and releases inorganic phosphate (Pi). Finally, a steady conformational state between F-actin and 
G-actin is reached, with no further elongation of F-actin. Briefly, when ATP is bound to G-actin 
with the existence of cations, G-actin polymerizes into F-actin. This process is reversible when 
the free ATP-G-actin amount or the cation strength is low. 

The polymerization process that the (+) end grows whereas the (−) end loses subunits is 
called treadmilling, which drives the intracellular movement of F-actin (Figure 1C). Treadmilling is 
accelerated by ABPs (Table 2), such as cofilin and profilin (Figure 1D) [6]. Cofilin binds to ADP-
G-actin at the (-) end to enhance its dissociation from the chain. Profilin binds to free ADP-G-actin 
and catalyzes the exchange of ADP for ATP, delivering ATP-G-actin back to the (+) end. 

The actin dynamics are further regulated by capping proteins (CPs) (Table 2) binding to 
the (+) end, and tropomodulin, which binds to the (-) end, inhibiting the uncontrolled 
polymerization and depolymerization [7]. As a new actin polymerization regulator (Table 2), 
CRACD (capping protein-inhibiting regulator of actin dynamics) has been recently identified as a 
tumor suppressor in colorectal cancer, indicating the implication of deregulated actin dynamics in 
cancer [8-10]. 
 

1.2. Actin visualization 
To visualize actin-related events, several actin-detecting probes have been generated by fusing 
the fluorophore or fluorescent protein to actin (actin-GFP), actin antibody (actin-chromobody), 
actin-modulating drugs (phalloidin, SiR-actin, and SPY-actin), or ABPs (F-tractin, Lifeact, and 
UtrCH) (Table 3) [11, 12]. Unlike live-cell imaging, optimal fixation conditions are crucial to 
represent physiologically relevant actin dynamics. Fixation by methanol, ethanol, or acetone 
destroys the native quaternary structure of F-actin, which creates dotted artifacts in fixed cells [13, 
14]. Paraformaldehyde has been validated as the best fixation solution to retain actin structure 
[15, 16]. Furthermore, to avoid ethanol during the dehydration and hydration of paraffin-embedded 
tissues, cryo-section is the preferred choice to stain F-action by phalloidin in tissue samples [17]. 

The presence of nuclear actin was first described in the calf thymus cells in 1963 [18]. 
However, due to the lack of nucleus-permeable actin probes, the existence of nuclear actin has 
been in debate for decades [19]. Initially, nuclear actin was considered to be an artifact from 
cytoplasmic actin contamination [20]. Thanks to the development of microscopy and actin-
detecting constructs fused with nuclear localization signal (NLS), convincing evidence of nuclear 
actin have been introduced [21-24]. For example, the endogenous nuclear F-actin and G-actin 
are detectable by using the actin-chromobody-GFP-NLS in the normal colon epithelial cells and 
mucinous colorectal cancer cells (Figure 1E). 
 

1.3. Nuclear actin dynamics 
Actin protein is constantly and rapidly shuttled into and out of the nucleus via the nuclear pore 
complex (NPC) to maintain the actin balance between the cytoplasm and the nucleus [25]. By 
active transport, G-actin is imported into the nucleus by importin-9 (IPO9) in a complex with cofilin 
and exported out by exportin-6 (XPO6) coupled with profilin [26]. ABPs and actin-related proteins 
(ARPs) also exist in the nucleus (Table 2) [27-29]. Additionally, SUMOylation, a type of post-
translational modification, of actin interferes with the actin-XPO6 interaction to retain actin in the 
nucleus [30]. 

In this chapter, we focus on the roles of nuclear actin in various biological processes, 
including chromosome architecture organization, chromatin remodeling, transcription machinery 
regulation, and DNA repair, in the aspect of cancer [27, 31-34]. 
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2. Nuclear Actin and Chromosome Architecture 
 

2.1. The hierarchy of chromosome architecture 
The two-meter length of mammalian DNA is organized into a highly condensed chromosome at 
a supreme level of hierarchy [35]. In the classical model, chromatin is described as an alternation 
of euchromatin and heterochromatin. Euchromatin is loose and transcriptionally active with 
enrichments of specific histone modifications (H3K4me3, H3K36me3, and H3K79me3), mainly 
located in the nuclear interior [36]. Heterochromatin is dense and transcriptionally repressed, 
marked by repressive histone modifications (H3K9me2, H3K9me3, and H3K27me3), located at 
the nuclear periphery [36, 37]. 

Based on the genome-wide chromosome conformation capture sequencing (Hi-C-seq) 
[38], the chromosome architectural hierarchy is divided into the nucleosomes, chromatin fibers, 
chromatin loops, topologically associating domains (TADs), chromosome compartments, and 
chromosome territories in a decreasing resolution (Figure 2) [39-42]. 

Nucleosomes (10-30 nm):    Nucleosome is the fundamental unit of chromatin, containing 
a histone octamer (two copies of each H2A, H2B, H3, H4) wrapped with 147 bp DNA [43]. 
Adjacent nucleosomes are connected by the linker DNA associated with the linker histone protein 
(H1 or H5) to form a beads-on-a-string array at a diameter of 11 nm [43]. 

Chromatin fibers (30 nm):    The beads-on-a-string arrays coil into a 30 nm diameter 
helical structure known as the chromatin fiber under the shape of solenoid or zig-zag [44]. 

Chromatin loops (30-100 nm):    It is suggested that, on the linear chromatin fiber, the 
distal enhancers physically bind to the promoters of target genes at spatial proximity to initiate the 
transcription by looping out to form the chromatin loops [45, 46]. This process is mediated by 
anchoring several proteins, including transcription factors (TFs), RNA polymerase II, CCCTC-
binding factor (CTCF), cohesin, and mediator [47]. These loops form the active chromatin hub 
(ACH) spanned by CTCF-CTCF homodimer with point-to-point interactions between loci [46]. The 
well-appreciated example of ACH is that the long-range cis-regulatory elements of hemoglobin 
subunit beta (HBB) interact strongly and facilitate transcription by forming the chromatin loops in 
erythroid cells [48]. The loops that are not spanned by CTCFs are called ordinary domains [41]. 
The formation of chromatin loops is regulated by the loop extrusion process [49]. In this process, 
the cohesin complex binds to a chromatin fiber and reels it to form the loops [50]. With the 
increasing density of loops, more advanced structures like TADs are formed. 

TADs (100-500 nm):    TAD is a chromatin region formed by bunches of topologically 
adjacent and preferentially interacting chromatin loops and ordinary domains [51]. TADs are 
separated by boundaries that are formed by CTCFs and cohesins [42]. Inside of a specific TAD 
or between similar TADs, chromatin loops interact with each other more frequently than 
sequences in the adjacent non-TAD regions [39, 42]. TADs were first identified as sub-
chromosomal domains in the 1980s, and validated by Hi-C-seq, appearing as individual triangles 
on the heatmap [40, 52]. They can be further subdivided into smaller ones called subTADs when 
increasing the resolution [53]. 

Chromosome compartments (500-1000 nm): The chromosome is mainly 
compartmented by TADs [39]. It can be defined as A (euchromatic) or B (heterochromatic) by the 
principal component analysis of Hi-C-seq [54]. A is in a transcriptionally active state, while B is in 
a repressed state. Chromosome compartments can switch between each other in a cell-type-
specific manner [55]. 

Chromosome territories (1000-2000 nm):    Chromosome territory is the discrete space 
each chromosome occupies in the nucleus [56]. 

Recently, a new technique named targeted chromatin capture (T2C) combining a 
simulation method [57, 58] proposed a new model of chromosome architectural hierarchy that the 
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chromatin quasi-fibers (in a length of 80-120 nm) fold into stable chromatin loops and cluster into 
aggregate/rosette-like sub-chromosomal domains [52, 57, 59]. 
 

2.2. Organizing chromosome architecture by nuclear actin 
Accumulating evidence suggests that nuclear actin plays a vital role in organizing chromosome 
architecture. For example, knock-out (KO) of the Actb gene encoding mouse β-actin upregulates 
the intensity of heterochromatin in the nuclear interior [60]. In humans, a higher proportion of 
heterochromatin was observed at the mitotic exit when nuclear F-actin polymerization was 
inhibited [61]. Furthermore, the impaired nuclear F-actin increases the degree but reduces the 
dynamics of chromatin compaction in the postmitotic nucleus, whereas the enhanced nuclear F-
actin does reversely [61, 62]. The underlying mechanisms of how nuclear actin modulates 
chromosome architecture are described below. 

Actin and nuclear lamina:    Nuclear lamina affects chromosome architecture [46, 63]. 
Heterochromatin binds to the nuclear lamina at the nuclear periphery to form the region called 
lamina-associated domains (LADs) [63], whereas euchromatin loops out into the nucleus interior. 
When cells differentiate, constitutive LADs remain attached to the lamina, whereas facultative 
LADs become detached, and the genes they contain become actively transcribed. After mitosis, 
LADs relocate to the nuclear periphery. It was reported that the perturbation of perinuclear actin 
can deform the nuclear lamina integrity and consequently alter the heterochromatin localization 
and enhance chromatin condensation [64, 65]. This deformation may be via the linker of 
nucleoskeleton and cytoskeleton (LINC) complex, which couples the cytoplasmic actin with the 
nuclear lamina, and does the mechanotransduction [66]. Though the interactions between nuclear 
actin and nuclear lamina have not been elucidated, the chromosome architecture might likely be 
organized by nuclear actin via nuclear lamina based on the close connection between cytoplasmic 
and nuclear actin. 

Nuclear actin and chromatin remodeling (for nuclear actin-related chromatin 
remodeling, see next section):    The Hi-C-seq and assay for transposase-accessible chromatin 
sequencing (ATAC-seq) of mouse embryonic fibroblasts showed that the deficiency of the BAF 
chromatin remodeling complexes induced by Actb KO is related to the transitions of chromosome 
compartments [67]. CTCF binds to the BRK (brm and kis proteins from fly) domain of SMARCA4, 
the core subunit of BAF complexes [68-70]. The cohesin occupancy at enhancers is also severely 
perturbed upon SMARCA4 depletion [71, 72]. Therefore, it is plausible that nuclear actin-related 
chromatin remodeling complexes might stabilize the chromosome compartments by CTCF or 
cohesin. 
 

2.3. Chromosome architecture and cancers 
Accumulating evidence demonstrates that distinct chromosome architecture is associated with 
cancer [73-82]. The computational model shows that chromosome architecture shapes the 
landscape of somatic copy-number alterations in cancer [76]. The chromosome decompaction 
caused by the loss of linker histone H1 leads to the activations of cell stemness-related genes 
and enhances lymphoma growth [80]. The dynamic changes of chromosome compartments 
caused by estrogen stimulation create active open chromatins enriched with cancer invasion 
signaling activities and promote estrogen receptor (ER)-positive breast cancer [82]. Interestingly, 
large-scale sequencing identified a new chromosome compartment restraining the malignant 
progression of colorectal cancers [77]. 

 
 

3. Nuclear Actin and Chromatin Remodeling 
 
In the transcriptionally repressed state, DNA is inaccessible as a packaged nucleosome array. 
Chromatin accessibility refers to the degree to which chromatin-binding factors, such as TFs, RNA 
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polymerase II, or architectural proteins (CTCF and cohesin), physically bind to the open chromatin 
to initiate the transcription [83]. Chromatin remodeling complexes modulate chromatin 
accessibility by sliding, inserting, or ejecting the nucleosomal core with the energy of ATP 
hydrolysis [84]. There are four chromatin remodeling families in mammals (Table 4): the BAF 
family (canonical BAF complex [cBAF], polybromo-associated BAF complex [pBAF], and non-
canonical BAF complex [ncBAF]), the CHD family (CHD1-2 complexes as subfamily I, CHD3-5 
complexes as subfamily II, and CHD6-9 complexes as subfamily III), the INO80 family (INO80, 
SRCAP, and TRRAP complexes), and the ISWI family (ACF, CHRAC, NoRC, NURF, RSF, and 
WICH complexes) [85-89]. Among those chromatin remodeling families, BAF and INO80 families 
contain both ACTB and ARPs (ACTL6A, ACTL6B, ACTR5, ACTR6, and ACTR8) as core 
components [90-92]. 

This section focuses on the roles of nuclear actin and ARPs in modulating the BAF and 
INO80 chromatin remodeling families in cancer. 
 

3.1. Nuclear actin in the chromatin remodeling complexes 
In yeast, the subdomains 1-2 and 3-4 of Act1 (yeast homolog of actin) are twisted 6° by the 
interaction with both Arp4 (yeast homolog of ACTL6A) and the helicase-SANT-associated (HSA) 
domain of Snf2 (yeast homolog of SMARCA4) [93]. This spatial twist hinders the cleft of Act1 from 
binding with latrunculin, an actin polymerization inhibiting toxin, and masks the (+) end of Act1 to 
prevent the actin polymerization [93, 94]. The Act1 is also observed unable to bind with profilin, 
which might be due to its embedding into the Baf complex [93]. In contrast, these findings were 
not observed in the mammalian BAF complex, which needs further investigation [95]. In the yeast 
Ino80 complex, the (+) end of Act1 is also masked, making it unable to interact with profilin, while 
the subdomain 2 of Act1 is still accessible to DNase I [96]. 
 

3.2. Nuclear actin and cBAF complex 
The human cBAF complex consists of three modules (Figure 3A): ATPase, ARP, and base 
modules (Figure 2) [88, 91]. The residues at 521-1647 amino acids (AAs) of SMARCA4 form the 
ATPase module, which grabs the nucleosome. The HSA domain (residues at 446-520 AAs) of 
SMARCA4 binds to the heterodimer constructed by ACTB and ACTL6A to form the ARP module, 
which maintains the rigid structure of HSA to couple the motions of the ATPase and base modules 
during chromatin remodeling. The pre-HSA region (residues at 350-445 AAs) of SMARCA4 is 
anchored into the base module, in which the SMARCB1 packs against the bottom of the 
nucleosome. 

When the nucleosome is recruited, the cBAF complex sandwiches it to provide a structural 
basis for chromatin remodeling [91]. Upon ATP hydrolysis, the ATPase module is positioned to 
engage with the nucleosome and translocate DNA. The DNA translocation creates DNA tensions 
to eject nucleosomes or peels the DNA off from the adjacent nucleosomes, which creates 
nucleosome-depleted regions for chromatin-binding factors to access and bind. 

In mice, the genetic deletion of the subdomain of Actl6b, an ARP component of neuron-
specific BAF complex, induces impairments of phosphorylation of synaptic cofilin, memory, and 
synaptic potentiation [97]. These neurological impairments are rescued by restoring the nuclear 
actin dynamics using a phosphomimetic mutant of cofilin, an ABP accelerating actin 
depolymerization [97]. This study demonstrates the functional interaction between nuclear actin 
dynamics and the BAF complex. 

 
3.3. BAF family and cancers 

The genes encoding the subunits of the BAF family are highly mutated in many human cancers 
[98]. In animal models, the loss-of-function of subunits contributes to in vivo tumorigenesis, 
implying the overall roles of the BAF complex as tumor suppressors. For instance, the genetic 
mutations (loss-of-function) in the SMARCC1 gene are frequently observed in colon and ovarian 
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cancer [99]. The truncated mutations of the SMARCE1 gene are enriched in clear cell 
meningioma [100]. The mutation at the splicing site of the BCL7A gene interferes with its binding 
to the BAF complex in the diffuse large B-cell lymphoma [101]. In lung adenocarcinoma, the loss 
of SMARCA4 promotes the malignant transformation of the CCSP (club cell secretory protein)-
positive cells with early metastasis [102]. As a cBAF-specific subunit, ARID1A loss initiates 
transdifferentiation from ER-dependent luminal cells to ER-independent basal-like cells in breast 
cancer. This cellular plasticity is mediated by the reconfigured BAF complex activating the luminal 
lineage-determining TFs, including ESR1, FOXA1, and GATA3 [103]. As a pBAF-specific subunit, 
PBRM1 loss reduces the binding of SMARCA4 to the IFNGR2 promoter, decreasing the 
expression of downstream target genes and enhancing the resistance to immune checkpoint 
blockade in renal cancer [104]. 

In contrast, some subunits of the BAF complexes appear to play oncogenic roles. For 
example, the ACTL6A gene is amplified, and its encoded protein interacts with TP53 to promote 
cell proliferation and cancer cell stemness in head and neck squamous cell carcinoma [105]. As 
a ncBAF-specific subunit, BRD9 induces the binding of the ncBAF complex to the enhancers of 
the cancer-related gene, STAT5A, promoting leukemia cell survival [106]. Recently, protein 
structure-based assessment of the SMARCA4 showed the different impacts of various mutations 
in the SMARCA4 gene on the chromatin remodeling activity [107-111]. In addition to the genetic 
alterations in the BAF complexes, the direct impacts of nuclear actin dynamics on the chromatin 
remodeling complex need further investigation. 
 

3.4. Nuclear actin and INO80 complex 
The human INO80 complex is constructed on the frame of INO80 (Figure 3B) [90, 112]. The N-
terminus domain (residues at 1-267 AAs) of INO80 recruits metazoan-specific subunits, including 
INO80D, INO80E, MCRS1, NFRKB, TFPT, and UCHL5 [113]. The HSA domain (residues at 273-
404 AAs) of INO80 directly binds with ACTR8 followed by ACTB, ACTL6A, YY1, and YY1AP1 to 
form the subcomplex 1 [114, 115]. The residues at 487-1556 AAs of INO80 contact RUVBL1-
RUVBL2 hexamer to form the subcomplex 2, which serves as an ATPase. The architecture of 
subcomplex 2 is relatively rigid because the wheel-like insert domain (residues at 835-1083 AAs) 
of INO80 is inserted into the barrel-like RUVBL1-RUVBL2 hexamer to restrain its conformation. 
The subcomplex 2 accommodates a tail-like structure constructed by ACTR5, INO80B, and 
INO80C to form the subcomplex 2 plus. 

When the nucleosome is recruited, the ATPase of the INO80 complex grabs the 
nucleosome against the ACTR5-INO80C heterodimer to provide a structural basis for chromatin 
remodeling [90]. Upon ATP hydrolysis, the ATPase pumps DNA towards the nucleosome dyad, 
unwrapping DNA from the nucleosome surface. When the ACTR5-INO80C heterodimer slips, the 
DNA wrap is pushed forward and slides across the nucleosome surface, releasing open DNA. In 
yeast, the requirement of Arp5-Ies6 (yeast homologs of ACTR5-INO80C) heterodimer for 
chromatin remodeling activity was also observed[116]. 

The yeast Ino80 complex has two different nucleosome binding states switched by the 
subcomplex 1 (Act1-Arp4-Arp8 module) [117, 118]. In state I, Arp8 (yeast homolog of ACTR8) 
grabs the linker DNA of the nucleosome via its Insert 2A (residues at 301-390 AAs) domain [119-
121]. In state II, Arp8 folds toward the Tip49A-Tip49B (yeast homologs of RUVBL1-RUVBL2) 
hexamer to wrap the exposed histone surface of the nucleosome and moves Act1 and Arp8 
toward the nucleosome to build direct contacts. Furthermore, act1-2 (an A58T substitution in 
ACT1) compromises the function of the yeast Ino80 complex, with a significant reduction of 
ATPase activity, nucleosome binding affinity, and chromatin remodeling activity [96]. 

Consequently, the gene transcription can also be affected by the disruption of nuclear 
actin dynamics via the INO80 complex. Additionally, ACTR5 KO-induced dysfunction of the INO80 
complex impairs the opening of the cis-regulatory region of heme oxygenase 1 (HMOX1), 
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resulting in a deficiency of transcriptional activator binding [122]. These studies suggest the 
crucial roles of nuclear actin and ARPs in INO80 complex-mediated gene regulation. 
 

3.5. INO80 family and cancers 
It has been well documented that the INO80 family regulates transcription, DNA replication, DNA 
repair and catalyzes the exchange of H2AZ1-H2B heterodimers with free H2A-H2B in biological 
processes [123]. In non-small cell lung cancer and melanoma, the INO80 complex is highly 
correlated with H3K4me1 and H3K27ac histone modifications and enhances the assembly of 
enhancers to activate the cancer-related genes [124-126]. ATAC-seq elucidates that this 
enhancer-mediated oncogenic transcription is due to the increased nucleosome occupancy 
configured by the INO80 complex [126]. During DNA replication in prostate cancer cells, the 
chromatin remodeling driven by the INO80 complex resolves the R-loop, a DNA-RNA hybrid 
structure for transcription, and reduces the R-loop-induced DNA damage in cancer cells [127]. 

The high expression of SRCAP is found in colon cancer [128]. In prostate cancer, SRCAP 
knockdown decreases the expression of prostate-specific antigen KLK3 by reducing the binding 
of H2AZ1 to its enhancers [129]. 

TRRAP shields mutant TP53 protein against the degradation machinery via its HEAT 
repeat region (residues at 1050-1158 AAs) in lymphoma [130]. It also maintains the cell stemness 
derived from glioblastoma multiforme by transactivating the self-renewal-related gene, Cyclin A2 
(CCNA2). In contrast, its silencing decreases the tumorigenicity of cancer stem cells both in vitro 
and in vivo due to the reduction of H3 acetylation and H3K4me3 [131]. Similarly, TRAAP 
knockdown suppresses the expression of stemness-associated markers, including NANOG, 
POU5F1, and SOX2 in ovarian cancer [132]. Once TRRAP or KAT5, a subunit of the TRRAP 
complex, is depleted, hepatocellular carcinoma cells become senescent and get arrested at the 
G2/M phase [133]. Interestingly, the report based on clinical samples and the survival data of 
breast cancer patients shows that lower expression of TRRAP is observed in tumors compared 
to normal tissues, and higher TRRAP expression indicates smaller tumor size with better overall 
survival [134]. 

Due to the potential oncogenic roles of the INO80 family in cancer, specific disruption of 
INO80-associated ARPs (ACTR5, ACTR6, or ACTR8) might be a plausible option for cancer 
prevention or treatment. 
 
 
4. Nuclear Actin and Transcription Machinery 
 

4.1. Nuclear actin and MRTFs 
In 1984, Egly et al. found that nuclear actin stimulates RNA polymerase II-mediated transcription 
in vitro [135]. Similarly, Scheer et al. demonstrated the involvement of nuclear actin in modulating 
transcription in salamander oocytes [136]. Later, the vital role of nuclear actin in the initiation and 
elongation of transcription in eukaryotes was unveiled [137]. After these milestone studies on the 
potential role of nuclear actin in transcription, more researchers began to study the function of 
nuclear actin [135, 136]. To date, accumulating evidence suggests that in combination with TFs, 
ABPs, or transcription complexes, nuclear actin modulates gene expression from transcription 
initiation to transcription elongation [138]. 

Among the actin-mediated transcriptions, the regulation of myocardin-related transcription 
factor A (MRTFA) is one of the most well-demonstrated examples (Figure 4A) [139]. MRTFA is a 
transcription co-activator of serum response factor (SRF), which regulates the expression of 
muscle-specific, immediate-early, and cytoskeletal genes in response to changes in G-actin levels 
[140-142]. The N-terminus of MRTFA contains a domain with three RPEL (G-actin-binding sites) 
motifs that operate as a G-actin sensor, regulating both subcellular localization and nuclear 
activity of MRTFA [143-145]. G-actin can interact with the RPEL domains directly [146]. Within 
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the RPEL domain, a bipartite NLS is embedded, preventing the nuclear import of the pentameric 
actin complex [147, 148]. In unstimulated conditions, when G-actin levels are relatively high, 
MRTFA is predominantly localized in the cytoplasm due to efficient actin-dependent and exportin 
1 (XPO1)-mediated nuclear export of MRTFA. This is because G-actin binding occludes the 
bipartite NLS in the RPEL domain [143, 148, 149]. However, upon serum stimulation that activates 
transient nuclear actin polymerization, G-actin is transformed into F-actin, which results in the 
release and nuclear accumulation of MRTFA by increased nuclear import, and decreased XPO1-
dependent nuclear export, followed by the subsequent activation of SRF target gene transcription 
[21, 62, 150]. 

Additionally, nuclear actin polymerization and MRTFA/SRF-mediated transcription are 
also regulated by other factors, including F-actin-monooxygenase MICAL2 [151], cyclic-
AMP(cAMP) signaling [152], and Ras association domain-containing protein 1 isoform A 
(RASSF1A) [153]. MICAL2 regulates nuclear actin through redox modification that decreases G-
actin levels inside the nucleus. This, in turn, increases MRTFA accumulation in the nucleus and 
MRTFA/SRF-dependent gene transcription [151]. Recently, McNeill et al. showed that elevated 
c-AMP increases nuclear G-actin levels in vascular smooth muscle cells, suppressing cell 
proliferation and migration by inhibiting MRTFA/SRF and YAP/TAZ-TEAD-dependent gene 
expression [152]. RASSF1A is a tumor suppressor frequently epigenetically suppressed in tumors 
and forms a complex with XPO6 and RAN GTPase, promoting the XPO6-mediated nuclear export 
of actin, thus regulating transcription via MRTFA/SRF [153]. Interestingly, this pathway is 
deregulated in cancer cells, which leads to the accumulation of nuclear G-actin and suppression 
of MRTFA/SRF-mediated transcription [153]. Besides, there is another MRTF named MRTFB 
which can also stimulate SRF-dependent transcription. In contrast to MRTFA, MRTFB has a 
different tissue distribution and relatively weak affinities with SRF [154]. Kuwahara et al. found 
that in NIH3T3 cells, MRTFB also undergoes nuclear translocation react to Rho signaling and 
nuclear actin polymerization, even though it is slightly less responsive than MRTFA upon serum 
stimulation [155]. In human aortic endothelial cells, Hayashi et al. showed that the nuclear 
localization of MRTFA and MRTFB is affected by actin dynamics involved in gene expression 
[156]. 

Together, MRTF/SRF transcriptional activity is regulated by signal-induced nuclear actin 
polymerization and depolymerization cycle and G-actin binding to the RPEL domain of MRTFA 
[21, 157, 158]. It is noteworthy that many cytoskeletal genes, including actin, are also regulated 
by MRTF/SRF, suggesting that the actin-MRTF-SRF signaling axis forms a feedback loop where 
actin dynamics regulates the transcriptional homeostasis of the cytoskeleton [158, 159]. 
 

4.2. Nuclear actin and RNA polymerases 
In the eukaryotes, RNA polymerases (Pols) I, II, and III catalyze DNA-dependent RNA synthesis 
[160]. Pol I synthesizes ribosomal RNA (rRNA), and Pol II and Pol III synthesize mainly mRNA 
and tRNAs, respectively [160]. Several studies showed that nuclear actin directly binds to all three 
RNA Pols (Figure 4B) [161-164]. Later, the impacts of nuclear actin-associated RNA Pols on gene 
regulation were unveiled. 

RNA Pol I:    As a molecular motor, nuclear F-actin interacts with the RNA Pol I complex 
together with nuclear myosin I (NM1) and is involved in the transcription of ribosomal RNA genes 
(rDNA) [165, 166]. Philimonenko et al. found that nuclear actin and NM1 are associated with rDNA, 
and microinjection of antibodies against actin or NM1 into the nuclei of cells decreased the Pol I-
mediated transcription in vivo and in vitro [167]. Ye et al.’s study showed that drugs inhibiting actin 
polymerization or myosin function blocked Pol I-driven transcription in vivo and in vitro [168]. 
Meanwhile, actin mutants (S14C, G15S, and V159N) stabilizing F-actin tightly bind to Pol I and 
activate transcription [168, 169]. Conversely, a polymerization-deficient actin mutant does not 
interact with Pol I and fails to activate transcription [168]. Moreover, the association of nuclear 
actin and NM1 with Pol I is interrupted when ATP exists but is stabilized by ADP, and by anchoring 
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NM1 to DNA and nuclear F-actin to RNA polymerase, the nuclear actomyosin complex serves as 
a motor that works with nuclear RNA polymerases to activate transcription [170, 171]. These 
studies suggest the crucial role of nuclear actin polymerization in Pol I-mediated transcription 
[168]. 

RNA Pol II:    In 1984, Scheer et al. showed that injection of actin antibodies into the nuclei 
of salamander oocytes inhibited the transcription [172]. Hofmann et al. found that actin is 
associated with actively transcribed genes and plays a pivotal role in the activation of transcription 
[161]. Later, in vivo and in vitro studies have recapitulated the requirement for actin in RNA Pol-
mediated transcription activation, initiation, and elongation [159]. In 2019, to determine the 
nuclear actin interactome, Viita et al. employed two mass spectrometry (MS)-based techniques, 
affinity purification (AP)-MS and biotin identification (BioID)-MS [173]. The MS data identified 
nuclear actin as a component of the RNA Pol II pre-initiation complex [173]. Sokolova et al. 
performed chromatin immunoprecipitation sequencing (ChIP-seq) and genome-wide analysis in 
fly ovaries. For the first time, they showed that nuclear actin in physical conjunction with Pol II co-
occupies the promoters associated with gene bodies of actively transcribed genes [174]. 
Furthermore, by using immunoprecipitation, immunofluorescence, and glutathione S-transferase 
(GST) pull-down assay, Qi et al. and Hu et al. showed that nuclear actin directly interacts with Pol 
II subunits POLR2E and POLR2G, as well as Pol III subunits POLR3C, POLR2F, and POLR2H 
[175, 176]. During the initiation and elongation of transcription, cyclin-dependent kinase 9 (CDK9), 
a subunit of positive transcription elongation factor b (P-TEFb) and RNA helicase A (RHA) are 
associated with G-actin in the nucleus, which physically links nuclear actin with Pol II [176, 177]. 

RNA Pol III:    Utilizing protein purification of Pol III from human IMR90 cells expressing a 
double-tagged Pol III subunit, Hu et al. observed that actin is co-purified with Pol III [175]. They 
showed that actin is stably associated with one or more of the POLR3C, POLR2F, and POLR2H 
subunits of Pol III via direct interaction, required for Pol III-mediated transcription in vitro [175]. 
Moreover, ChIP experiments showed that actin occupies the promoter of the U6 gene actively 
transcribed by Pol III [178, 179]. Additionally, the treatment of cells with methane methylsulfonate, 
an inhibitor of Pol III, released the transcription initiation complex from the U6 promoter and 
uncoupled the actin protein from the Pol III complex [178, 180]. Moreover, it was shown that the 
monomeric form of actin is essential for Pol III-driven transcription [181]. 

In addition to nuclear actin, the actin polymerization and depolymerization regulators were 
shown to be engaged in RNA Pols. For instance, the ARP2/3 complex and its activators N-WASP 
(neural Wiskott-Aldrich syndrome protein), WASF1 (WASP family member 1), WASH (WASP 
family homolog), and motor protein myosin are associated with nuclear RNA Pols and 
transcription processes [182-185]. Recently, using next-generation transcriptome sequencing and 
super-resolution microscopy, Wei et al. showed that the formation of RNA Pol II complex is 
facilitated by the N-WASP/ARP2/3-dependent polymerization of nuclear actin filaments [186]. 
Together, these lines of evidence suggest that nuclear actin and its regulatory proteins are 
physically and functionally associated with RNA polymerases-controlled transcriptional activation, 
initiation, and elongation. 
 

4.3. Nuclear actin and pre-mRNA splicing 
Actin was also detected in pre-messenger ribonucleoprotein (pre-mRNP) [187], implying the 
potential roles of nuclear actin in pre-mRNA processing (Figure 4C) [188, 189]. In 2019, the mass 
spectrometry-based nuclear actin interactome approaches not only revealed the association of 
actin with pre-initiation complex (PIC), transcription elongation but also pre-mRNA splicing and 
processing [173]. Viita et al. found that alterations in nuclear actin levels disturb alternative 
splicing of reporter gene constructs, suggesting that nuclear actin affects pre-mRNA splicing 
directly or indirectly, likely by affecting the transcription elongation rate [173]. Another study 
combining bioinformatics with protein binding analysis showed that nuclear actin interacts with 
the unique region of the pre-mRNA of the Epstein-Barr virus (EBV) latent membrane protein 2 
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(LMP2) [190]. Treatment of EBV-positive cells with drugs inhibiting actin polymerization showed 
a significant decrease of spliced isoform levels of the pre-mRNA, indicating the role of nuclear 
actin in modulating viral RNA splicing [190]. 
 

4.4. Other mechanisms 
Ribonucleoproteins:    Besides the roles of nuclear actin in regulating transcriptional activation 
and mRNA splicing, nuclear actin is engaged in RNA processing and transportation [191]. Nuclear 
actin is also associated with small nuclear ribonucleoproteins (snRNPs) modulating mRNA 
processing and viral RNA nuclear export [191-193]. Moreover, nuclear actin binds to 
heterogeneous nuclear ribonucleoprotein (hnRNP) protein hrp65-2 in the Chironomus tentans 
cells and hnRNP U protein in the mammalian cells [189, 194, 195]. Sjölinder et al. showed that 
growing pre-mRNA recruits actin, hnRNP proteins, and chromatin remodeling complexes to 
actively transcribed genes for ongoing transcription [196]. 
 

Wnt signaling:    Wnt signaling is a highly conserved pathway orchestrating various 
cellular processes and is hyperactivated in many human cancers [197-199]. Recent studies 
suggested that nuclear actin modulates Wnt signaling-mediated transcription via direct interaction 
with Wnt signaling-related components, including β-catenin, CRACD, and APC (adenomatous 
polyposis coli) (Figure 4D) [10, 200-202]. In 2016, Yamazaki et al. found that nuclear F-actin 
colocalizes with β-catenin, increases the nuclear accumulation of β-catenin, and enhances the 
transcriptional β-catenin downstream targeting genes of the Wnt/β-catenin signaling pathway 
[202]. Jung et al. identified CRACD as a regulator stabilizing the cadherin-catenin-actin complex 
via capping protein inhibition in the nucleus. The frequent inactivation of CRACD in colorectal 
cancer inhibits actin polymerization, resulting in G-actin release and accumulation in the nucleus 
with Wnt signaling hyperactivation mucinous colorectal cancer in vivo [10]. 

As a protein destruction complex, APC binds to and induces the degradation of β-catenin 
[203, 204]. The APC gene is highly mutated in colorectal cancer, resulting in the hyperactivation 
of Wnt/β-catenin signaling [205]. In addition to the cytoplasmic APC, APC contains the NLS and 
is also located in the nucleus [206, 207]. In conjunction with an actin-nucleating protein, formin 
mDia1, the C-terminus ‘basic’ domain of APC protein nucleates the formation of actin filaments 
and stimulates actin filament assembly [201]. Baarlink et al. found that the mDia1 triggers the 
nuclear actin polymerization in response to serum stimulation [208]. Therefore, nuclear APC likely 
regulates nuclear actin dynamics via actin nucleation. 

Emerging evidence demonstrated that nuclear actin and ABPs are physically and 
functionally associated with various proteins related to gene expression [159]. Given the distinct 
feature of nuclear actin in cancer cells, the impacts of deregulated nuclear actin dynamics on 
aberrant gene expression in tumorigenesis need further interrogation. 
 
 
5. Nuclear Actin and DNA Repair 
 
In the mid-1930s, Timoféeff-Ressovsky et al. found that ionizing and ultraviolet (UV) radiation 
induces DNA damage [209]. At the end of the 1940s, Kelner and Dulbecco et al. discovered the 
DNA repair mechanism in cells and bacteriophages using UV radiation [210, 211]. Genotoxic 
stress induces DNA damage, which includes disruption or addition to the nucleotide of the DNA 
or the breakage of one chain of the DNA or DNA double-strand break (DSB) [212, 213]. 
Unresolved DNA damage results in a variety of human disorders and cancers [214, 215].  

5.1. DSB repair 
DNA damage response includes repair and tolerance [213]. However, severe DNA damage such 
as DSBs should be repaired to avoid cell death [216]. DSBs may lead to chromosomal 
rearrangements, including deletion, translocation, and amplification, which can trigger the 
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activation of oncogenes or the inactivation of tumor suppressors for tumorigenesis [215]. There 
are two major DSB repair mechanisms: non-homologous end joining (NHEJ) and homologous 
recombination (HR) (Figure 4E, F) [213]. NHEJ takes place in both dividing and non-dividing cells, 
whereas HR occurs only mainly in dividing cells during the late S-G2 phase because HR utilizes 
a homologous sister chromatid as a template [217, 218]. 

NHEJ is a fast and predominant DSB repair mechanism in mammalian cells [219]. NHEJ 
often results in the loss of genetic information at the site of the DSB [219]. At the beginning of 
NHEJ, the Ku (Ku70/Ku80) heterodimer recognizes and binds to the two DSB DNA ends directly, 
followed by recruitment of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) [220, 221]. 
Then, the two DNA-PKcs positioned at each DSB terminus align the two DNA ends together, 
activating processing factors such as Artemis, which generates overhangs at the DNA ends [222]. 
Finally, DNA polymerases fill in the gaps, followed by end-joining via X-ray repair cross 
complementing 4 (XRCC4)-DNA Ligase IV complex in collaboration with non-homologous end-
joining factor 1 (NHEJ1) [223-225]. 

HR uses the sister chromatid as a template to repair DSB, which leads to a high-fidelity 
repair of DSBs [226]. HR mainly occurs in the late S-G2 phase and includes ssDNA overhang 
generation, strand invasion, homologous pairing, Holliday junction formation, DNA synthesis, 
branch migration, and Holliday junction resolution [227]. The key step of HR is initiated by 
recognition of the DSB by the MRN (MRE11-RAD50-NBS1) complex [228]. As a break sensor, 
the MRN complex is associated with DNA endonuclease RB-binding protein 8 (RBBP8) and 
recruits the serine-protein kinase ataxia telangiectasia mutated (ATM) to DSB sites, which result 
in the generation of 5′-3′ end resection and the 3′ ssDNA overhang [229-232]. Then, the ssDNA 
overhang is stabilized by replication protein A (RPA) binding, DNA repair protein 51 (RAD51) is 
loaded onto the ssDNA overhang [233]. Next, RAD52 is recruited to RPA, and the RAD52-RPA 
complex is replaced by the RAD51-BRCA2 complex [233, 234]. Then, RAD51-coated ssDNA 
promotes invasion of the template strand, which generates a Holliday junction [235]. Later, the 
DNA strand is synthesized by a polymerase using the sister strand as a template, followed by 
branch migration and subsequent resolution of the heteroduplex [236, 237]. Finally, the two 
broken DNA ends are rejoined by a DNA ligase [238]. 
 

5.2. Nuclear actin-mediated repair of DSBs 
In the past decades, there has been increasing evidence showing the vital role of nuclear actin in 
the DSB repair process [159]. In 2012, Andrin et al. performed the pull-down assay with purified 
F-actin protein and found that F-actin binds to DSB repair proteins including Ku80, MRE11, and 
RAD51 in vitro, suggesting that actin polymerization may be engaged in DSB repair [239]. Later, 
utilizing actin probes, Belin et al. found that DNA damage induces the generation of long nuclear 
actin filaments, short nucleolus-associated filaments, and dense nuclear actin clusters in living 
cells [240]. In 2018, two independent studies demonstrated that nucleator ARP2/3 complex-
mediated nuclear actin filament assembly is required for DSB repair in different cell lines [241, 
242].  

Nuclear F-actin participates in both NHEJ and HR repair pathways [239]. In the NHEJ 
pathway, depolymerization of endogenous nuclear actin alters the retention of Ku80 at DNA 
damage sites in human cells [239]. In the HR pathway, nuclear F-actin drives DSB dynamics in a 
somewhat different way between heterochromatin and euchromatin [243]. In fly and mouse cells, 
DSB detection and resection occur within the heterochromatin domain [244-246]. Firstly, the early 
DSB signaling, processing factor Mre11 and heterochromatin protein 1a (Hp1a) promote the 
recruitment of Arp2/3 and myosins to DSBs [241]. Secondly, Arp2/3 activation promotes actin 
polymerization and filament growth towards the nuclear periphery [247]. Thirdly, Smc5/6 blocks 
Rad51 recruitment and instead recruits Unc45 to activate nuclear myosins [247, 248]. Finally, the 
myosin-Smc5/6-chromatin repair complex travels along nuclear actin filaments and anchors 
DSBs to nuclear pores, where HR repair continues with Rad51 recruitment and strand invasion 
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[241, 242, 248]. In fly and mouse cells, nuclear F-actin is detected by the live-cell imaging with 
nuclear F-actin marker chromobody and F-actin staining with phalloidin [241]. The live-cell 
imaging shows that re-localization of heterochromatic DSBs occurs by directly moving along a 
nuclear actin filament network assembled at the repair sites by Arp2/3 and extension toward the 
nuclear periphery [241, 247]. In euchromatin, Mre11 and resection promote the movement of DSB 
repair sites via Arp2/3-induced short nuclear actin polymers, which also travel with euchromatic 
repair sites [241, 249]. In response to DSB in human cells, enriched ARP2/3 and nuclear actin 
polymerization at the DSB repair sites facilitate focus clustering, DSB resection, DSB movement, 
and HR completion without myosins [241, 242]. 

Genomic instability, one of the hallmarks of cancer, is mainly due to the impaired DNA 
repair pathway [250]. Therefore, cancer-actin dynamics affect genomic instability via nuclear 
actin-mediated DNA repair. 
 
 
6. Concluding Remarks 
Actin is the most abundant protein in the cells [1]. The canonical features of actin include 
cytoplasmic localization, GTPase activity, and highly dynamic transition between polymerization 
and depolymerization [1-3]. These properties led to the intense investigation of actin’s roles in 
orchestrating the cytoskeleton, resulting in the seminal findings of actin cytoskeleton-mediated 
cell morphology, cell migration, and cell adhesion. 

Evolved from these classical outlooks, accumulating evidence has unveiled that actin is 
also engaged in diverse nuclear processes. Beyond its roles as a structural protein composing 
the cytoskeleton, the nuclear actin is being highlighted in the context of chromosome architecture, 
chromatin remodeling complexes, transcription machinery, and DNA repair [27, 31-34, 67]. These 
actin-associated nuclear events were generally appreciated as the perspective of a similar 
mechanism of the cytosolic actin dynamics between polymerization and depolymerization. For 
instance, nuclear actin polymerization mechanically regulates chromosome architecture [67]. 
Additionally, the polymerized nuclear actin serves as a railroad facilitating the movement of DNA 
repair proteins [32]. Notwithstanding, it is noteworthy that monomeric and oligomeric nuclear actin 
also exists as a distinct structure, unlike the one in the cytoplasm. For example, monomeric 
nuclear actin in the chromatin remodeling complex displays a different structure from the 
cytoplasmic G-actin [93]. Besides such a conformational difference, the nuclear import and export 
of actin, ARPs, and their post-translational modifications may provide additional regulatory layers 
of nuclear actin dynamics [30]. Therefore, along with its role as a building block in the cytoplasm, 
both monomeric and oligomeric actin in the nucleus should be comprehensively appreciated as 
a critical component of various nuclear processes. Despite the current limitations in dissecting 
nuclear actin in vivo, the ongoing technical improvement in visualization and quantification is 
expected to unravel nuclear actin-associated biological events up-close. 

The hallmarks of cancer include the loss of genomic/chromosomal integrity and aberrant 
gene expression, which are physically and functionally associated with nuclear actin. Thus, it is 
reasonable to assume that fine control of nuclear actin dynamics is a gatekeeper of tumorigenesis 
(Figure 5). Indeed, recent genome-wide studies showed that actin and actin regulatory proteins 
are genetically and epigenetically dysregulated in cancer [10, 105]. Therefore, further 
understanding of the pathophysiological impact of nuclear actin deregulation on chromosome 
architecture, chromatin remodeling complexes, transcription machinery, and DNA repair will lead 
to biomarker identification, therapy development, or biomarker-guided molecular targeting of 
cancer. 
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Tables 
 

Gene symbol Gene name Expressing cells 
ACTA1 Actin alpha 1, skeletal muscle Skeletal muscle cells 
ACTA2 Actin alpha 2, smooth muscle Vascular smooth muscle cells 
ACTB Actin beta Ubiquitous in non-muscle cells 

ACTBL2 Actin beta like 2 Ubiquitous in non-muscle cells 
ACTC1 Actin alpha cardiac muscle 1 Cardiac muscle cells 
ACTG1 Actin gamma 1 Ubiquitous in non-muscle cells 
ACTG2 Actin gamma 2, smooth muscle Enteric smooth muscle cells 

 
Table 1. Actin genes.
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Actin-nucleating 

proteins 
Actin-binding 

proteins [6, 28] 
Actin-related 

proteins [28, 251] 
Capping 

proteins [7] 
Capping protein regulators 

[8] 
ARP2/3 complex [252] Cofilin [253] ACTL6A ADD1 CARMIL1 

Formin [254] Gelsolin [255] ACTL6B ADD2 CARMIL2 
Spire [256] Profilin [257] ACTL7A CAPG CARMIL3 

 Thymosin beta-4 [258] ACTL7B CAPZA1 CD2AP 
  ACTL8 CAPZA2 CRACD [10] 
  ACTL9 CAPZA3 IQANK1 
  ACTL10 CAPZB MTPN 
  ACTRT1  PLEKHO1 
  ACTRT2  RCSD1 
  ACTRT3  SH3KBP1 
  ACTR1A  WASHC2A 
  ACTR1B  WASHC2C 
  ACTR2   
  ACTR3   
  ACTR3B   
  ACTR3C   
  ACTR5   
  ACTR6   
  ACTR8   
  ACTR10   

 
Table 2. Actin dynamics-related protein families. 



 32 

 
Probe Description Mechanisms Pitfalls 
Actin-

chromo
body 
[259] 

A DNA plasmid encoding an anti-
actin VHH nanobody fused to a 

fluorescent protein. 

Fluorescent-labeled nanobody labels 
endogenous actin by antigen-antibody 

reaction. 

High background when 
transient transfected into cells. 

Signal quenching after cell 
fixation. 

Actin-
GFP 
[260] 

A DNA plasmid encoding human 
actin fused to GFP. 

Ectopic expression of fluorescent-labeled actin 
into cells. 

Interfere with the physiological 
actin dynamics. 

F-tractin 
[261] 

A DNA plasmid encoding N-terminus 
10-52 AA peptides of rat inositol-

trisphosphate 3-kinase (Itpk) [262]. 

Itpk has a F-actin specifically binding domain 
at the N-terminus 1-66 AA region [263]. Inhibit ABPs binding to F-actin. 

Lifeact 
[264] 

A DNA plasmid encoding N-terminus 
1-17 AA peptides of yeast ABP140 

[265]. 

Lifeact binds to G-actin with an affinity 10-fold 
higher than F-actin. Alter F-actin organization [266]. 

Phalloid
in [267] 

Bicyclic heptapeptide from death cap 
mushroom. 

Phalloidin specifically binds at the interface 
between subunits of F-actin, locking the F-actin 

structure and preventing depolymerization. 

Prevent F-actin 
depolymerization. Cytotoxicity. 

SiR-
actin 
[268] 

Silicon-rhodamine (SiR) conjugated 
to desbromo-desmethyl-

jasplakinolide. 

SiR is a fluorophore [269]. Jasplakinolide binds 
at the interface of G-actin oligomers at the 

nucleation phase [270, 271]. 

Enhance F-actin 
polymerization. Cytotoxicity. 

SPY-
actin 

Improved version of the SiR-actin by 
utilizing SPY dyes instead of SiR. 

  

UtrCH 
[272] 

A DNA plasmid encoding N-terminus 
1-261 AA peptides of human 

utrophin. 

The N-terminus of utrophin has calponin-
homology (CH) domains, which specifically 

binds to F-actin [273]. 
Alter F-actin organization. 

 
Table 3. Actin-detecting probes. 
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BAF family CHD family INO80 family ISWI family 
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BCL
7A 

BCL
7A 

BCL
7A 

 MBD3  
NF
RK
B 
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4 
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F6 

      

BCL
7B 

BCL
7B 
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2 

BRD
9 

     VPS
72 
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1B 
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10 

      YEA
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1 
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2 
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3 

              

 
Table 4. Subunits of mammalian BAF, CHD, INO80 and ISWI chromatin remodeling complexes [85, 87-92, 112, 114, 115, 274-281].
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Figure Legends 
 
Figure 1. Cytoplasmic actin dynamics and nuclear actin visualization. 
(A) Structure of ACTA1 (PDB: 4PKG). (B) The process of actin polymerization with three phases: 
the nucleation phase, the elongation phase, and the steady phase. (C) The treadmilling of F-actin. 
The rates of G-actin assembly and disassembly depend on the concentrations of free ATP-G-
actin on both ends. When the concentration of free ATP-G-actin is between 0.12 µM and 0.6 µM, 
the (+) end is elongated, and the (-) end is shortened, demonstrating the treadmilling of F-actin. 
(D) The regulation of actin turnover by actin-binding proteins (ABPs). In the cofilin cycle, cofilin 
binds to the (-) end of F-actin containing ADP-actin, inducing them to fragment and thus enhancing 
depolymerization. In the profilin cycle, profilin binds ADP-G-actin and catalyzes the exchange of 
ADP for ATP. The ATP-G-actin-profilin complex delivers actin to the (+) end with dissociation and 
recycling of profilin. (E) Live-cell imaging of nuclear actin by stably expressing actin-chromobody-
GFP-NLS. The colon epithelial cell line (CCD841CoN) shows high levels of nuclear F-actin. 
Mucinous colorectal cancer cell line (LS174T) exhibits the reduced nuclear F-actin.  
 
Figure 2. The hierarchy of chromosome architecture. 
DNA chain (<10 nm) wraps around the histone octamer to form the nucleosome (10-30 nm). The 
beads-on-a-string arrays of nucleosomes coil into chromatin fibers (30 nm). The liner chromatin 
fibers loop out to form the chromatin loops (30-100 nm). Topologically adjacent and preferentially 
interacting chromatin loops construct into topologically associating domains (TADs) (100-500 nm). 
Topologically interacting TADs form the chromosome compartments (500-1000 nm). 
Chromosome territories (1000-2000 nm) are the discrete space for each chromosome in the 
nucleus. 
 
Figure 3. Human canonical BAF and INO80 chromatin remodeling complexes [282]. 
(A) Cryogenic electron microscopy (Cryo-EM) structure of human cBAF complex binding with the 
nucleosome (PDB: 6LTJ) [91]. (B) Cryo-EM structure of human INO80 complex binding with the 
nucleosome (PDB: 6HTS) [90]. 
 
Figure 4. Nuclear actin functions in the nucleus. 
(A) G-actin inhibits the MRTFA/SRF-mediated transcription. Nuclear actin polymerization 
releases MRTFA from G-actin to activate SRF-mediated transcription upon serum stimulation. (B) 
Actin is involved in transcription. Actin and ABPs are associated with RNA polymerases I/II/III, 
and interacts with P-TEFb, snRNPs, and hnRNPs, regulating transcription initiation and 
elongation. (C) The association of nuclear actin with pre-mRNA splicing and processing. The 
molecular mechanism of actin-controlled pre-mRNA splicing is unclear. (D) Nuclear actin 
modulates Wnt signaling-mediated transcription via direct interaction with Wnt signaling-related 
components, including β-catenin, CRACD, and APC (not shown). (E, F) When double strand of 
DNA breaks in the nucleus, nuclear F-actin participates in the non-homologous end joining (NHEJ) 
and homologous recombination (HR) repair pathways. 
 
Figure 5. Nuclear actin, a gatekeeper of genomic integrity and gene expression. 
In normal cells, the well-balanced nuclear actin dynamics plays crucial roles in modulating 
chromosome architecture, chromatin remodeling complexes, transcriptional machinery, and DNA 
repair, which maintains genomic integrity and orchestrates gene expression for tissue 
homeostasis. Conversely, dysregulated actin dynamics impairs the fine control of chromosomal 
architecture, chromatin remodeling, transcriptional machinery, and DNA repair. Consequently, 
genomic instability, inactivation of tumor suppressor genes, and hyperactivation of oncogenes 
contribute to tumorigenesis. 
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